<,
£ “«»é""’?

.vﬁlmuq.aa
J’t""z‘!‘rs‘mal

LABORATOIRE DE TELECOMMUNICATIONS ET
TELEDETECTION

of S

e

o

Uc L B - 1348 Louvain-la-Neuve Belgique

Université
catholique
de Louvain

i

“,

DISTANCE TRANSFORMATIONS:
FAST ALGORITHMS AND APPLICATIONS
TO MEDICAL IMAGE PROCESSING

Olivier CUISENAIRE

These présentée en vue de Pobtention du grade de
Docteur en Sciences Appliquées

Jury composé de

Benoit Macq (UCL/TELE) - Promoteur
Auguste Laloux (UCL/TELE) - Exeminateur
Roger Demeure (UCL/RDGN) - Ezeminateur
Christian Michel (UCL/TOPO) - Ezaminateur
Jan Cornelis (VUB - Brussel) - Examinateur

Ferran Marqués (UPC - Barcelona) - Exeminateur
Charles Trullemans (UCL/DICE) - Président

Octobre 1999

Foreword

This book presents the results of my Ph.D. thesis, on which T worked
for four years at the Communications and Remote Senging Laboratory
(TELE) of the UCL. This work was funded by a grant from the “Fonds
pour la Formation 3 la Recherche dans I'Industrie et I'Agriculture”
(FRIA).

For our laboratory, it represents the second Ph.D. thesgis in the field of
medical image processing, after Jean-Philippe Thiran’s pioneering work,
published in July 1997. My first thanks go to Jean-Philippe for starting
this activity in TELE and opening the track for me and others.

The present study of distance transformations started as a side activity
to the main research track of our medical image analysis group: the
study of non-rigid registration methods for matching brain scans with
anatomical atlases. Over the years, this side activity has taken more
and more of my time as I came to realize the richness of the problem.
T am profoundly grateful to Benoit Macq, my supervisor, for giving me
the freedom to do so. Benoit has also been the one who convinced me
to join the laboratory in 1995, and has been a constant support through
the years.

In TELE, I have had the chance to collaborate very closely with Pierre
Charbonnier, then with Matthieu Ferrant. Together we explored fasci-
nating topics such as the template-based segmentation of brain struc-
tures using a brain atlas and active surfaces, or the volumetric finite ele-
ment modeling of brain deformations. Working with Pierre and Matthieu
has been both an inspiring and joyful experience. T must also thank all
the other members of TELE for the great social and intellectual atmo-
sphere that they contribute to create in our laboratory.

iv

Foreword

Beyond TELE, I have had the opportunity to interact with many other
teams within the UCL, in particular with the Positron Tomography
Laboratory (TOPO), the Neural Rehabilitation Engineering Laboratory
(GREN), the Neuro-physiology Laboratory (NEFY) and the Radiology
Unit at St-Luc Hospital (RDGN). I could not possibly list all the people
in those teams, and therefore T will restrict myself to two, with all due
excuses to the others.

Christian Michel (TOPQO) has been a constant support ever since he
co-supervised my master thesis in 1995. Although he is probably one
of the hardest-working researchers at the UCL, he is always remarkably
available for any scientific discussion. He has also provided me with
many of the images I worked upon.

Eduardo Romero (GREN) has been the physician with whom I collabo-
rated most closely. His enthusiasm to develop the automatic morphom-
etry of nerve cross-sections has been the trigger that led to the variety
of applications that are presented in this work. He has also provided
me with all the data sets needed for chapter 4, and has made significant
contributions to the validation part of that chapter.

Beyond the UCL, I wish to thank the people of the Surgical Planning
Laboratory at the Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA. They have welcomed me in their amazing research
environment in March, July and August 1999. Ron Kikinis suggested
that I apply my algorithms to virtual endoscopy. Simon Warfield super-
vised my work last summer and first suggested that I apply my knowl-
edge of distance transformations to k-NN classification. My thanks go
to them and many others at the SPL.

My thanks also go to Gunilla Borgefors, whose articles on chamfer dis-
tances are probably the most referred to in the field. Although we never
met in person, she sent me an very nice encouraging email a few years
ago, after reading one of my first papers. Similarly, Max Viergever was
the chairman of the oral session where T presented my first paper at
SPIE Medical Imaging 1996. In both cases, their generous encourage-
ment, was a great source of motivation for the apprentice researcher T was.

Of course, I must also thank the members of my jury for the in-depth

Foreword

reading of this text and the various corrections they suggested.

Finally, T cannot fail to thank my parents, my family and my friends
for their support throughout these years. In particular, I wish to thank
Zsuzsanna, Karam, Cristi, Ovidiu, Nikos, Michelangelo, Laurent, Giu-
seppe, Paolo, Jonas, Jari, Guy, Yannis and Marit, friends from all over
Europe that worked with me in the Summer Program and Educational
Committees of the Board of European Students of Technology (BEST).
I will always remember the time I spent with them as some of the best
of my life.

Olivier Cuisenaire
October 1999

Foreword

Contents

Foreword
Contents
General Overview

1 Introduction
1.1 Basicconcepts i i it i e
1.2 A typical application
1.3 TImplementation issues
1.4 Aimsofthisthesis

2 A review of distance transformations
2.1 Definitions. 0 . 0 i e e e e e e e
2.2 Approximate distance transformations.
221 Chamfering.
2.2.2 Vector propagation.
2.3 Exact Euclidean distance transformations.
2.3.1 Parallel processing.
2.3.2 Sequential processing by propagation.
2.3.3 Sequential processing by raster scanning.
2.3.4 Independent scanning
2.3.5 Voronoi transformation
24 Extendedconcepts
2.4.1 Geodesic distances
2.4.2 k-distance transformations.
2.43 Distance transformations on gray-scale images .
25 Applications. 0 e
2.6 Discussion. it ittt e e e e e e e

iii

vii

viii

Contents

3 Euclidean distance transformation by propagation

3.1 Propagation with a single neighborhood

3.2 Errorsin approximate EDT
3.2.1 Errors with a 3 x 3 neighborhood
3.2.2 Influence of the neighborhoodsize
3.2.3 Influence of the propagation process

3.3 Propagation with multiple neighborhoods
3.3.1 The PMN algorithm
3.3.2 Oriented neighborhoods

3.4 Computational Complexity

3.5 Usingthe Euclidean DT to implement mathematical mor-
phology e
3.5.1 Mathematical morphology operators
3.5.2 Fast implementations
3.5.3 Morphological dilation using PMN
354 Discussiono o

4 Application: morphometry of nerve cross-sections

4.1 Inmtroduction.
4.1.1 Anatomy of the nervous system
4.1.2 Nerve morphometry
4.1.3 Image acquisition
4.1.3.1 Animals and tissue preparation

4.1.3.2 Photography

4.2 Segmentation procedure
4.2.1 Pixel classification
4.2.2 Connected operators filtering
4.2.3 Mpyelin sheath thickness evaluation
4.24 False positivedetection
425 CQCorrection of obliquity

4.3 Experimentalresults
4.3.1 Detectionratios.
4.3.2 Comparison with the manual procedure
4.3.3 Comparison with an arbitrary sampling

4.4 DiSCuSBION . . . v v v v e e e e e e

5 Signed Euclidean DT with error detection and correc-
tion.
6.1 Signed EDT and Voronoi diagrams
52 Errorcorrection.o

Contents

53 CSED Algorithm 103

5.4 Computational Complexity 106

6 Euclidean DT in 3 dimensions 109

6.1 Extending the approximate EDTt0o 3D 109

6.2 Possible error detection and correction methods in 3D . . 110
6.3 Limitations to the 3D error detection and correction meth-

T |- 112

6.4 Hybrid algorithm, combining 4SSED+ and Saito’s methods116

7 Application: registration of MR images 121
7.1 Imtroduction 121
7.1.1 Applications 0oL 121
7.1.2 Stateofthe Art, 122
7.1.2.1 Methods using fiducial markers 122
7.1.2.2 Manual retrospective methods 123
7.1.2.3 Automatic retrospective methods 123
7.1.3 Discussion 124
7.2 Localization of transcranial magnetic stimulation 125
7.2.1 Registrationmethod 126
722 Results 128

7.3 Registration of MR images with a Computerized Brain
Atlas L Lo e 129
7.3.1 Registrationmethod 129
732 Resultso 130
8 Geodesic Distance Transformation 133
8.1 Geodesicmetrics 133
8.2 Geodesic DT algorithms 136
8.2.1 Bucket sorting algorithm 136
8.2.2 Circular propagation algorithm 138
8.3 Accuracy e e 140
8.4 Computational complexity. 142

9 Application: Camera path-planning in virtual endoscopy145

9.1 VirtualEndoscopy, 145
9.2 Computing the shortest path from the Bs-geodesic DT . . 148
9.3 Pathcentering 150

9.4 Experimentalresults 153

Contents

10 5-NN classification and k-distance transformation 159
101 Introduction 0 it e e 159
10.2 The k-DT algorithm., 161
10.3 Computational complexity. 165

11 Application: tissue classification in T1, T2 MR images. 171
11.1 The physics of T1- and T2-weighted MRT 171
11.2 T1,T2 classification 173
113 Results . . .« . . . L 0 o i e e e e e 175

Conclusion 181

Related publications 185

List of Figures 187

Bibliography 195

(General Overview

Medical image processing is a demanding domain, both in terms of CPU
and memory requirements. The volume of data to be processed is often
large (a typical MRI dataset requires 10 MBytes) and many processing
tools are only useful to the physician if they are available as real-time
applications, i.e. if they run in a few seconds at most. Of course, a
large part of these demands are - and will be - handled by the develop-
ment of more powerful hardware. On the other hand, when faced with
non-linear computational complexity, the development of improved al-
gorithms is obviously the best solution. Distance transformations, a
powerful image analysis tool used in a number of problems such as im-
age registration, requires such improvements.

A distance map is an image where the value of each pixel is the dis-
tance from this pixel to the nearest pixel belonging to a given set or
object. A distance transformation (DT) is an algorithm that com-
putes a distance map from a binary image representing this set of pixels.
This definition is globa! in the sense that it requires finding the minimum
on a set of distances computed between all image pixels and all object
pixels. Therefore, a direct application of the definition usually leads to
an unacceptable computational complexity. Numerous algorithms have
been proposed to localize this definition of distance to the nearest pixel
and allow a faster DT computation, but up to now, none of them com-
bines both exactness and linear complexity.

Numerous applications of distance transformations to image analysis
and pattern recognition have been reported and those related to medi-
cal image processing are explored in what follows.

Chapter 1 introduces a few basic concepts, a typical application of dis-
tance transformations in pattern recognition and the key challenges in

General Overview

producing a DT algorithm.

Chapter 2 contains an exhaustive critical review of published algo-
rithms. The strong and weak points of the most popular ones are dis-
cussed and the core principles for our original algorithms are derived.

Chapters 3, b, 6, 8 and 10 present original distance transformation
algorithms. Each of those chapters is organized in a somewhat similar
faghion. First we describe the algorithm. Then we evaluate its computa-
tional complexity and compare it to the state of the art. Chapter 4, 7,
9 and 11 each present an application to a particular problem in medical
image processing, using the algorithm developed in the previous chapter.

Ideally, the description of any medical image processing problem should
include a medical justification of the need for an automated processing, a
complete review of the state of the art in the field, a detailed description
of the proposed processing method, and an evaluation of the accuracy
of the results and their medical significance. Because of both time and
space constraints in this thesis, such an exhaustive work will only be
presented for the application in chapter 4, while the other applications
will be described more briefly.

Chapter 3 describes a new exact Euclidean distance transformation us-
ing ordered propagation. It is based on a variation of Ragnelmam’s [127]
approximate Euclidean DT. We analyze the error patterns for approx-
imate Euclidean DT using finite masks, and we derive a rule defining,
for any pixel location, the size of the neighborhood that guarantees the
exactness of the DT. This algorithm is particularly well-suited to im-
plement mathematical morphology operations, which are examined in
details.

In Chapter 4, we apply the algorithm of chapter 3 to the segmen-
tation of neuronal fibers from microscopic images of the sciatic nerve.
In particular, it is used to determine the thickness of the myelin sheath
surrounding the center of the fiber. This study was carried out in collab-
oration with the Neural Rehabilitation Engineering Laboratory, UCL.

Chapter 5 proposes another exact FEuclidean distance transformation,
based on the explicit computation of the Voronoi division of the image.

General Overview

Possible error locations are detected at the corners of the Voronoi poly-
gons and corrected if needed. This algorithm is shown to be the fastest
exact EDT to date. It approaches the theoretical optimal complexity, a
CPU time proportional to the number of pixels on which the distance is
computed.

Chapter 6 investigates how the algorithms of chapters 3 and 5 can
be extended to 3 dimensional images. It shows the limitations of both
approaches and proposes an hybrid algorithm mixing the method of
chapter 5 and Saito’s.

In Chapter 7, the 3D Euclidean DT is applied to the registration of
MR images of the brain where the matching criterion is the distance
between the surfaces of similar objects (skin, cortex, ventricular sys-
tem, ...) in both images. Examples are shown, from projects with the
Neuro-physiology Laboratory, UCL, and with the Positron Tomography
Laboratory, UCL.

Chapter 8 discusses an extension of the distance transformation con-
cept: geodesic distances on non-convex domains. Because geodesic dis-
tances are based on the notion of paths, a trade-off has to be introduced
between the accuracy with which straight lines are represented and the
way curves of the domain are followed. It is shown that, whatever the
trade-off chosen, there is an efficient implementation of the geodesic DT
by propagation.

By back-tracking the geodesic distance propagation, one can find the
shortest path between a target and a starting point. In chapter 9, this
is used to plan the optimal path for the camera movements in virtual
endoscopy, a work done in collaboration with the Surgical Planning Lab-
oratory, Harvard Medical School, Boston.

Chapter 10 extends the Euclidean distance transformation from find-
ing the nearest object pixel to finding the k nearest object pixels. Tt is
shown that this can be done with a complexity increasing linearly with k.

In Chapter 11, the k-DT is used as a fast implementation of the k
Nearest Neighbors (k-NN) classification between different tissue types
in multi-modal MR imaging. This is illustrated through the classifica-

General Overview

tion of multiple sclerosis lesions from T1-T2 images, provided by the
Radiology unmit, St-Luc Hospital, UCL, via the Positron Tomography
Laboratory, UCL.

Finally, a general conclusion is drawn. Tt reviews the main contribu-
tions of the thesis, its applications and explores some new domains in
which their applications could also be useful. Ultimately, the publica-
tions related to this thesis are briefly reviewed.

Chapter 1

Introduction

This chapter introduces and illustrotes the basic concepts of distance
transformations. It describes o typical application and addresses some
key issues for their implementation.

1.1 Basic concepts

The aim of a distance transformation is to compute the distance from
a point to an object, i.e. to a set of pixels. Asg illustrated at figure 1.1
(left), the distance from point p to the object is the smallest distance
from p to any point of the object. In other words, it is the distance from
p to the nearest point ¢ belonging to the object.

If one wants to know the distance from p to the object, one can apply the
above definition, although it requires a large amount of computations
when the object contains many points. When one needs to know this
distance in several locations p, it is often faster to simply look it up in
a distance map (figure 1.1), i.e. an image where the distance to the
object has been pre-computed in all locations.

The distance transformation (DT) is the operation that computes
the distance map from the binary image representing the object. The
key point of this thesis is that it is possible - although not necessarily
eagy - to implement distance transformations efficiently.

There are several ways to define distances. In figure 1.2, the distance
from p to the object is the distance from p to g. That means that the

Chapter 1. Introduction

Figure 1.1: Left: distance from a point to an object. Right: distance
map

value of the distance map D in p, or D(p), is 5 when distances are com-
puted with the usual Euclidean metric.

On the other hand, one could consider another type of metric. For in-
stance, the city-block distance is defined as the shortest path with only
vertical and horizontal steps. With that metric, D(p) is the distance
along the dashed line, i.e. D(p) = 3|+ 4] =T.

Another extension is what people call the “signed” distance. Instead of
a simple scalar value, the signed distance transformation computes
the relative location of p from its nearest object pixel g. In figure 1.2,
the signed DT gives SD(p) =p — g = (3, —4). It is of course possible to
compute the value of the unsigned distance from the value of the signed
distance, but not the opposite.

The nearest neighbor transformation computes, at every location
p, the nearest pixel ¢ in the object. In figure 1.2, we have NN(p) =
g = (11,7). Computing the nearest neighbor or the signed distance
transformations is of course equivalent, with §D(p) = p — NN(p).

1.2 A typical application

Figure 1.2: Unsigned DT, signed DT and Nearest neighbor transforma-
tion.

1.2 A typical application

The best known application of distance transformations comes from pat-
tern recognition. Tt consists of looking for a specific object in a binary
image including objects of various shapes, positions, orientations, ... It
is often referred to as “chamfer matching”, because it was first used with
the chamfer DT, an approximation of the Euclidean metric.

Let us consider the example of figure 1.3. In the binary image, we are
looking for the letter T. First, we compute the distance transformation
and produce the distance map in the upper right corner. The pattern
we are looking for - the T shape - is then moved over the relief defined
by the distance map. Under the action of gravity, the pattern slides over
the relief until it reaches the lowest possible altitude. If this altitude is
zero or close to zero, we have found a matching pattern in the image.

More formally, the matching criterion is the correlation of the searched
pattern with the distance map. The pattern is located where this cor-
relation reaches an absolute minimum.

Theoretically, a more simple matching criterion could be used: the cor-
relation of the pattern with the original binary image. Indeed, this
criterion also has an absolute minimum at the correct location. Never-

Chapter 1. Introduction

Figure 1.3: Chamfer matching: Top-left: original image. Top-right dis-
tance map. Bottom: distance map seen as a relief.

1.3 Implementation issues

o K o« o ow 3 K E F o

Figure 1.4: Matching criterion for the T shape. Left: convolution with
the original image Right: Convolution with the distance map

theless, the use of the distance transformation brings a major practical
improvement, illustrated at figure 1.4. The distance-based criterion has
smooth and wide minima, which allows the use of fast minimization al-
gorithms. On the other hand, the simple criterion only has very abrupt
and narrow minima, requiring the complete set of possible positions to
be searched.

There are many other types of applications of distance transformations.
We review some in section 2.5, and present 4 medical imaging appli-
cations in chapters 4, 7, 9 and 11. The application of chapter 6 - the
registration of medical images - is closely linked to chamfer matching.

1.3 Implementation issues

Let us now consider how distance transformations can be computed. A
direct application - for every point - of the definition of the distance
between a point and an object is obviously not practical. On the other
hand, we know that the distances vary smoothly in the distance map,
so that it must be possible to deduce the value of the map in one pixel
from the values of the map around it. That is the fundamental idea used
in all DT algorithms.

The natural, human way to proceed would be the following: starting
from the object, we first determine the distance for the points that are
in its neighborhood, then to these neighbors’ neighbors and so on, as il-

10

Chapter 1. Introduction

i

Figure 1.5: DT by propagation. Original image - after first step - after
second step

\‘ﬂ_ -
v LA
Figure 1.6: DT by raster scanning. Original image - after forward scan
- after backward scan

lustrated at figure 1.5 for the two first steps of the propagation. Several
algorithms reviewed in the next chapter (sections 2.2.2, 2.3.2 and 2.4.1},
as well as those of chapters 3, 6, 8 and 10 try to mimic this human
approach.

Generally speaking, computers are not gifted at mimicking humans. In
particular, the above propagation process is not an easy thing to imple-
ment. Instead, several algorithms rely on the natural way for computers
to scan the image: raster scanning. The image is processed row by row
from the top-right pixel to the bottom-left pixel. Distance transforma-
tions by raster scanning require at least a forward scan (from top-right
to bottom-left) and a backward scan (from bottom-left to top-right), as
illustrated at figure 1.6. Algorithms of this type are reviewed in sections
2.2.1, 2.2.2 and 2.3.3. Also, the algorithm of chapter & uses raster scan-
ning.

1.3 Implementation issues

11

Figure 1.7: DT by independent scanning. Original image - after row-
scan - after column-scan.

Finally, another computer-friendly method to scan the image is some-
times used. As seen at figure 1.7, the rows of the image are first con-
sidered independently from each other. Then, the image is considered
column by column. Such algorithms are reviewed in sections 2.3.4 and
2.3.5.

Beside the order in which the image is scanned, the other key issue in
implementing a distance transformation is the type of information that
is propagated. On a continuous plane, as suggested by our examples
so far, the distance itself would be a sufficient information. Some of
the algorithms, reviewed at section 2.2.1, apply this simple idea to the
discrete image grid. It produces distance transformations with approxi-
mate (non-Euclidean) metrics, called chamfer metrics.

Alternatively, one can propagate the signed distance, as in section 2.2.2.
This allows the generation of distance maps that are quasi Euclidean.
Surprisingly, these maps are not guaranteed to be exact in all locations.
While on a continuous plane, the nearest object pixel of a point can
always be deduced from the nearest object pixels of the points in its
immediate neighborhood, this is not always true on a discrete grid.

This is the key reason why producing distance transformation on digital
images is a complex problem. As shown at section 2.3, many solutions
have been proposed, but none is optimal.

12

Chapter 1. Introduction

1.4 Aims of this thesis

The aims of this thegis are manifold. First, it proposes faster algorithms
to produce exact Fuclidean distance maps. Secondly, it explores ex-
tensions of the distance transformation concepts such as the geodesic
distances of chapter 8 or the k-distance of chapter 10. Thirdly, it il-
lustrates those methods by applying them to solve practical problems
in medical image processing. Ultimately, it intends to present a global
view on the powerful image analysis tools that are distance transforma-
tions, the methods to implement them and the cases where they can be
successfully applied.

Chapter 2

A review of distance
transformations

This chapter presents the framework of this thesis in more details. First,
we define the main concepts and notations that will be used in this text.
Secondly, we review most DT algorithms thaet were proposed in the lit-
erature. Those can be divided according to severdl criteria such as their
accuracy, the order in which they scan the image, their computational
complexity, etc. We choose to present them by order of increasing ac-
curacy, from the coarser metrics introduced by Rosenfeld [132] to the
exact Euclidean metric achieved by the latest algorithms. Thirdly we
present extended DT concepts, such as the geodesic DT where the image
domain is non-convex. Fourthly, we review the main applications of dis-
tance transformations, within and without the medical image processing
Jramework. Finolly, we discuss the main strong and weak points in the
various olgorithms and enalyze which elements can be used to develop
improved DT algorithms.

2.1 Definitions.

From a binary image I made of an object O and its background O, a
distance transformation [132] makes an image, the distance map D (Fig.
2.1}, in which the value of any pixel is the distance from this pixel to
the object O, i.e. the distance to the nearest pixel of O.

D(p) = min{distum(p,q),q € O} (2.1}

14

Chapter 2. Review of DTs.

H 5/4lal1]o]1]4 .

2l1]2]2[1]2]5 N -1

| 1]ol1]4]2]1]2 s
2(1]2]4]1]0]1 {
5[2[1]2]1]0]1] [~
41]of1]o]1]2 o[|]

Figure 2.1: Example of a distance transformation using the dist g metric.
Left: original image. Center: distance map. Right: Voronoi diagram.

The following notations are used in this text. Letters p, g, r are used for
pixels, with indexes p; where needed. In the original image, those pixels
belong either to the object O or the background O’ of the image. The
coordinates of pixel p are (py,py). distar(p,q) is the distance between
pixels p and g using the metric M. The following metrics are considered:

disty (P: Q') = |pw - Q'xl + |py - Q'yl (2-2)
dists(p, q) = max{|ps — @ul, |py — @} (2.3)
distopa(a:m) (P, 9) = A max{|py — gl |py — @l} + (2.4)

(B — A).min{|p; — g4/, |py - Q'yl}

diste(p,q) = /(s — @)? + (7 — @)” (2.5)

diste(p,q) = (px — %)2 + (py - Q'y)g (2.6)

They are called the city block (2.2}, chess board (2.3}, chamfer (2.4},
Euclidean (2.5) and squared Euclidean metric (2.6), respectively. In
what follows, when we speak of a FEuclidean distance transformation,
we usually mean a DT computed using the disty metric. Indeed, it is
equivalent to dist, but can be computed using integer operations only
since pixels are located on integer locations.

Tn the above definitions, the only relevant information is of course the
relative location of pixels p and g, i.e. dp = p — g. Therefore we often
used the simpler notation

2.2 Approximate distance transformations.

15

distay (dp) = distm(p, q) (2.7)

For instance, we have

distp(dp) = dp> + dp,j, (2.8)

An important related concept is that of the Voronoi diagram. It divides
the plane into tiles surrounding each object pixel. V. P(p) is the Voronoi
Polygon surrounding a pixel p of the object. For every pixel p € O,
V P(p) is the part of image I that satisfies

VPp)={geI|VreO,disty(p,q) <distp(g,7)} (2.9)
Finally, image processing operations are usually defined locally, i.e. pix-
els are only influenced by their neighborhood. We write N(p) the set of
neighbors of p, i.e.

Np)={g=p+n|nc N} (2.10)

N = N((0,0)) is called a neighborhood. The neighborhoods considered
here are balls, i.e. neighborhoods such that

N = By = {n|disty(n,(0,0)) < d} (2.11)

with some metric M. Of particular interest are the 4-direct and 8-direct
neighborhoods defined as

Ny = {n|dists(n,(0,0)) =1}
{(1:0):(_1:0):(0: 1):(0:_1)} (2'12)

Ng = {n|dists(n,(0,0)) =1}
= NyU{(1,1),(1,-1),(-1,1),(-1,-1)} (2.13)

2.2 Approximate distance transformations.

As defined in equation 2.1, distance transformations are global trans-
formations. Indeed, a direct application of this definition requires to
consider all object pixels in order to compute the value of the DT for
any non-object pixel. The computational complexity is proportional to

16

Chapter 2. Review of DTs.

the product of the numbers of pixels in O and O'.

In image processing, one usually tries to consider local transformations,
i.e. transformations for which the value of a pixel depends only on the
pixels belonging to its neighborhood. The simplest method to localize
the definition of eq. 2.1 is to assume that the DT at a pixel can be
deduced from the values at its neighbors. This is strictly true for the
city-block, chess-board and chamfer metrics, but not for the Euclidean
one. It leads to a class of algorithms that Borgefors [10] called chamfer-
ing. Unfortunately, chamfer metrics are only coarse approximations of
the Euclidean distance. Chamfer DTs produce systematic errors in the
directions not covered by the chamfer masks. This is studied in section
2.2.1.

In order to define a local Euclidean DT algorithm, Danielsson [37] pro-
poses to assume that the nearest object pixel (NOP) is a local property.
The NOP of a background pixel is the same as that of one its neigh-
bors. With the Euclidean metric, this assumption is true on a continuous
plane, but sometimes incorrect on a discrete grid, with particular ob-
ject pixels configurations. This leads to a quasi Euclidean DT where
non-systematic errors occur on some locations of the image only. This
is studied in section 2.2.2.

2.2.1 Chamfering.

Chamfer distance transformations are relying on the assumption that it
is possible to deduce the value of the distance at a pixel from the value
of the distance at its neighbors. This assumption is correct for regular
metrics [131], i.e. metrics for which

For all p, g such that distar(p,q) < 2, there exists an r different from p
and ¢ such that distm(p, q) = distm(p,) + dista(r, q).

This property is true for the city-block (2.2), chess-board (2.3) and cham-
fer (2.4) metrics - among others - but not for the Euclidean one when
pixels p, g, r are restricted to locations on an integer grid.

Chamfer DTs were developed and studied by Rosenfeld and Pfaltz [132,
133], Montanari [109], Barrow [3], Borgefors [10, 12], Piper and Granum

2.2 Approximate distance transformations.

17

d2|a1] 2] a3]d2] a3 0la
1] 0

— o |e2ot]e g [02]or]o2

5 [a3a2|o3 g

, z
s 2 [a3]o2]os
0|a1 d2]a1] a2] d2| 1] a2
|d2 d1]d2 d1] 0 d3|d2| 43

Figure 2.2: Masks used by chamfer DT algorithms, in 2 (left) and 3
(right) dimensions

[122], Forchhammer [56], Verwer, Verbeek and Dekker [167], Sharaiha
and Christofides [145] and Coquin and Bolon [22].

Rosenfeld [132, 133] proposes raster scanning (see below) and inde-
pendent scanning (see section 2.3.4) algorithms for the distance trans-
formation using the disty and distg metrics. Montanari [109] investi-
gates distances defined as the length of the shortest path between two
pixels. If the path is restricted to steps between 4-direct neighbors, this
is equivalent to the disty; metric. With 8-direct neighborhoods, it de-
fines a dist, o(1:v2) metric. Montanari proves that the shortest path
between two points consists of at most two types of steps, those with
orientations closest to the Euclidean vector between those points. This
property is central to the later publications by Borgefors [10] and Rag-
nelmam [127]. Barrow [3] uses a DT similar to Montanari’s, replacing
(1:4/2) by (2: 3), an integer approximation.

In [10], Borgefors reviews a number of metrics in 2 and 3 dimensions.
Chamfer distance transformations are produced in two raster scans over
the image, using the masks of Figure 2.2. In the forward scan, the masgk
starts in the upper left corner of the picture, moves from left to right
and from top to bottom. In the backward scan, it starts in the lower
right corner, moves from right to left and from bottom to top. The local
distances, d1 and da, in the mask pixels are added to the pixel values in
the distance map and the new value of the zero pixel is the minimum of
the five sums.

This algorithm can produce distance transformation with several met-
rice. For instance, for dy = 1 and ds = oo, we have the city block
metric; for dy = da = 1, the chess board metric, for dy = 1 and da = v/2,

18

Chapter 2. Review of DTs.

Montanari’s metric and for d, = 2 and dy = 3, Barrow’s approximation.
Borgefors computes the optimal values for d; and ds in order to minimize
the maximal difference between the chamfer metric and the Euclidean
one. Assuming that dy < 2d; (otherwise the diagonal direction is never
used), the distance between two pixels is

déStcha(dl:dzj (p,q) = ma.da + (m1 — ma).dy (2.14)

where m1 = |g — px| and m2 = |gy — py|, using Borgefors’ notations,
and mq > mg (otherwise, m, and mg change places in (2.14)). The
difference between the Euclidean and chamfer distance is thus

\Jm% —I—m% - mg.dg - (m1 - mg).dl (2.15)

f weset di = 1 and ds = d < 2, the optimal d can be found by
minimizing the maximum of (2.15). The maximum occurs either for
ma = 0, ma = my or the value of ma where the differential is 0. For
ma = 0, (2.15) is zero. For ma = m1, (2.15) becomes

(V2-d)M (2.16)

where M = my, = mgy. The differential of (2.15) with respect to mg is
zero for ma = ((d — 1)/v2d — d?).m1. Substituting this value in (2.15),
we find

(V2d—d® -)M (2.17)

where M = my. The minimum of the absolute maximum of 2.16 and 2.17
happens when they cross each other at d = 1/\/§ +4/ V2 —1 a2 1.351.

The upper limit for (2.15) is then (1/4/2 — 4/+/2 - 1).M = 0.06M.
Slightly better results could actually be obtained by removing the con-
straint that di = 1, as in [166], but this is beyond the scope of the
present review.

For computational efficiency, floating point operations are not desirable,
and therefore Borgefors suggests to use the sub—optimal integer approx-
imation d1 = 3 and da2 = 4, then to divide the resulting DT by 3. In
this case, the upper limit for the difference between the Euclidean and
chamfer metric becomes /2 — 4/3 ~ 0.08M. This is obviously much
better than the limits found for the city-block and chess-board metrics,

2.2 Approximate distance transformations.

19

|1 1| (1100|505 |10
[11]7 [5]7 [11] " 7|5 1 57 (7|57 |1
22| 0|5 |10][10]11 |14 o|s (10757

5 7|57 |11]15]|0 5|7 [10|5|0]|5

1] 7[5 7 [11] [11]io]11]14] 7]0]5s 718 50|56
|1 1B15(0|s|0|5]|7 105 |0 0|57

Figure 2.3: The chamfer (5:7:11) DT. Left: forward and backward masks.
Center. result after forward scan applied on the original image of figure
2.1. Right. final result.

(v2 — 2)M =2 —0.59M and (v/2 — 1)M ~ 0.41M, respectively.

In 3 dimensions, the optimal values are d; = 1, d» = (/3 + 1+
v/2v/3 —2)/3 ~ 1.314 and d3 = (2v/3 — 1 + 24/2v/3 —2)/3 ~ 1.628,

which gives ((+v/3 +1 — 24/24/3 — 2)/3)M = 0.10M for the upper limit
of the absolute difference between the metrics. Once again, it is often
better to consider a sub—optimal integer approximation with d; = 3,
ds =4 and d3 = 5. The upper limit of the difference with the Euclidean
metric is then (v7/3 — 1)M = —0.12M.

In [12], Borgefors extends the chamfer masks to 5 x 5 and 7 x 7. She
computes the optimal values for the local distances and evaluates several
integer approximations for 3 x 3 to 7 x 7 masks. She recommends using
(3:4) and (5:7:11) approximations for 3 x 3 and 5 x 5 masks, but finds no
significant interest in using 7 x 7 magks. The gain in precision becomes
negligible compared to the additional cost of using larger masks. With
chamfer (5:7:11), the upper limit for the absolute difference between this
metric and the Euclidean one is reduced to 0.02M. The chamfer (5:7:11)
DT is illustrated at Figure 2.3.

Piper and Granum [122] and Verwer et al. [167] propose to reach
the same results with a different type of scanning. Instead of two raster
scans, they use a propagation from the object pixels to the rest of the
image. This proves to be more efficient on non-convex image domains,
and will be further explained in section 2.4.1.

Sharaiha and Christofides [145] propose a graph theoretic approach to

20

Chapter 2. Review of DTs.

chamfer distance transformation. They represent the image as a graph
where pixels are represented as vertices and adjacency relations as arcs.
The cost associated with each arc is equal to the equivalent local dis-
tance in the chamfer masks. The vertices associated to the object pixels
are called root vertices. The Chamfer DT problem is then equivalent
to the shortest path forest problem in graph theory. They solve this
using a variation of the algorithms proposed by Moore [110] and Dial
[39]. Practically, this is similar to Piper’s approach [122], with a more
complex data representation.

In [56], Forchhammer shows that, within a limited distance, the true
Euclidean distance can be deduced from its chamfer approximation. In
particular, using the 3 x 3 mask with (3:4) local distances, the exact
EDT can be deduced from the chamfer distances for D(p) < +/17, but
not beyond.

Finally, Bolon [9] and Coquin [22] extend the chamfer metrics to
anisotropic grids. The optimal magk coefficients are found by mini-
mizing the maximum of the difference between the anisotropic chamfer
metric and the Euclidean along a circle. The complete solution is given
for b x 5 anisotropic masks, but can be applied to other masks as well.

2.2.2 Vector propagation.

In order to better approximate the Euclidean distance transformation,
Danielsson [37] proposes to propagate more information than just the
distance. Instead, he uses a two-component descriptor: [p, —g|, [py — gy
(also written |dp,|, |dpy|), the absolute values of the relative coordinates
of the nearest object pixel. The Euclidean distance can of course be
deduced from this information using (2.5).

The algorithm is similar to the chamfer DT algorithm described in sec-
tion 2.2.1, with one major change. During the process, the descriptors
need to propagate in all directions. Unfortunately, raster scanning with
magks such as those of Figure 2.2 only provides a 135 propagation angle.
Danielsson opens this angle up to 180° by modifying the raster scanning
procedure. At each step in the vertical direction, the row is scanned
both from left to right and from right to left. The masks considered are
then those of Figure 2.4.

2.2 Approximate distance transformations.

21

0.1 1,1]0,1]1.1]

[1.0/0.0 r—- ~— |0.0]1,0] 1,0[0,0 r—- —-—

—_ —t 0,0[1,0] [1.0/0,0] — — 0.0[1.0

0.1 [1,1]0,1]1,1

Figure 2.4: Masks used in Danielsson’s 4SED (left) and 8SED (right)
algorithms

On the negative side, this back and forth scanning requires more com-
putations. This adds up to the extra computational cost of comparing
descriptors - which requires the evaluation of (2.5) - instead of scalar
distance values in the chamfer DT. On the positive side, it allows us
to chose the smaller 4-direct neighborhood instead of the 8-direct one.
Danielsson names the respective algorithms "FOUR-point Sequential
Euclidean Distance mapping” or 4SED, and »EIGHT-point Sequential
Euclidean Distance mapping” or 8SED.

Unfortunately, these algorithms do not always provide the exact Eu-
clidean DT. At Figure 2.5 (left), pixel ¢ gets dist, = v32+0% = 3
instead of dist, = v/22 + 22 = /8. Indeed, 4SED only allows propa-
gation from a pixel to its 4-direct neighbors. In this case, none of the
4-direct neighbors of the erroneous pixel had the same nearest object
pixel. This particular error would have been avoided by using the 8SED
algorithm instead. But even 8SED isn’t completely error-free, as illus-
trated at Figure 2.5 (right), pixel ¢ gets dist, = +/170 while it should
have received /169 instead. Actually, whatever the size of the neighbor-
hood considered, it will be possible to find object pixel configurations
where errors do occur. This is analyzed thoroughly at section 3.2.

Nonetheless, the 4SED and 8SED are very good approximations of the
Euclidean DT. First, they provide exact results for most pixels. Sec-
ondly, Danielsson proves that, for 4SED, the maximum absolute error is
at most 0.29 pixel units. The maximum relative error is that illustrated
at Figure 2.5, i.e. (3 —+/8)/+/8 = 6.1%. With 8SED, the absolute error
is bounded by 0.09 pixel units and the maximum relative error is that

22

Chapter 2. Review of DTs.

pl re

pl rlg
re p2

p2

Figure 2.5: Errors made by Danielsson’s 4SED (left) and 8SED (right)
algorithms. Object pixel py is hidden from pixel g by object pixels p,
and ps, that are closer to r, and rq, respectively. Left: ¢ — p1 = (3,0),
g—p2=1(2,2), g —p3 =(0,3). Right: ¢ —p1 = (13,1), g —p2 = (12,5),
g—p3=(11,7)

of Figure 2.5, i.e. (+/170 —13)/13 = 0.3%. L.

Ye [186] introduces 4SSED and 8SSED, similar algorithms producing
the signed Euclidean distance transformations. This is done by propa-
gating (p; — gy, py — gy) instead of their absolute values. This is achieved
by replacing the masks of Figure 2.4 by signed masks, i.e. masks where
the x-coordinate is negative on the left column, and y-coordinate is neg-
ative on the upper row.

Leymarie [95] shows that Danielsson’s algorithm, with some minor
changes, can be implemented as efficiently as chamfer DT algorithms.
First, he uses the distg metric for all comparisons made in the algo-
rithm, so that only integer operations are needed. Secondly, he stores
explicitly 3 values for each pixel, i.e. the 2 relative coordinates (dp,, dpy)
of the nearest object pixels and the value of the distg distance. With
this information, the distance computations are simplified. Knowing the
value of distg(dp), we have

distg(dp+ (£1,0)) = (dps +1)* +dp,

Tn [37], Danielsson overlooks the existence of this error and announces the maxi-
mal relative error to be 0.15%

2.2 Approximate distance transformations.

23

distp(dp) + 2.dp, + 1

dpj, + (dpy +1)°

distg(dp) £ 2.dp, + 1

(dpy £ 1) + (dpy £ 1)°

distg(dp) £ 2.(dp,, + dp, £ 1)

(dpy £ 1) + (dpy £ 1)°

distg(dp) + 2.(dp, — dp, £1) (2.18)

distg(dp + (0,%1))

distg(dp + (£1,£1))

distg(dp + (£1,F1))

This reduces the computational cost of a distance to one addition, one
shift (x2) and one increment, instead of two multiplications, one addi-
tion and one square root operation in (2.5). Therefore, the computa-
tional complexity of the 4SED and 8SED algorithms becomes compara-
ble to that of the chamfer approximations.

Ragnelmam [127, 126] adapts the works of Piper [122] and Verwer [167]
to the Euclidean DT. Instead of raster scanning, he uses ordered propa-
gation (a.k.a. contour-processing) where the image pixels are considered
by increasing distance values. In [126], this is done by bucket sorting
with as many buckets as possible distance values. In [127], he uses or-
dered propagation by thresholding, where all pixels in the propagation
front are stored in the same dynamic list, but are only propagated if
their value is below the current distance.

In contrast with raster scanning algorithms, the propagation DT uses a
“write” formalism instead of a “read” formalism. In the raster scanning
method, the basic operation is the updating of the value one pixel based
on the information coming from several neighbors. In the propagation
method, the basic operation is the updating of all neighboring pixels
based on the value of the one propagated pixel.

The additional computational cost of the dynamic data structure needed
to implement ordered propagation is compensated by two factors. First,
using Danielsson’s back and forth raster scanning, many pixels are up-
dated several times, up to 4 times. Ideally, pixels only need to be updated
once, when they get their final value. Ordered propagation approaches
this behaviour because pixels are only propagated once. Secondly, the
information from a pixel only needs to be propagated in the direction
of increasing distances and not backward, which reduces the size of the
neighborhoods used. Adapting Montanari’s theorem [109] (section 2.2.1)

Chapter 2. Review of DTs.

Sejafes sejafes
= i
[T+

P e
S2Ra BB

N o
111 I+
” -

Figure 2.6: Directional neighborhoods used by Ragnelmam’s ordered
propagation algorithm. Left: for D(p) = 0. Center: for D{p) = 1.
Right: for D(p) > 1.

= ul
(I O

A Nk P

Figure 2.7: Ragnelmam’s 3-scan 8SSED. Top: masks used. Bottom:
supported propagation directions.

to Euclidean metrics, Ragnelmam shows that, apart from the two first
iterations, only one or two neighbors need to be considered for propaga-
tion, as illustrated at Figure 2.6.

In [128], Ragnelmam shows that the 8SSED algorithm can also be im-
plemented with separable raster scans, i.e. without the back and forth
scan at each line suggested by Danielsson. Each scan, with a specific
scanning order and a given mask, can support the propagation of infor-
mation within some part of the direction space. Any SSED algorithm
should include enough scans to support propagation in all directions. In
2 dimensions, it is possible to produce the approximate EDT in 3 raster
scans only, with the masks and scanning orders illustrated at Figure 2.7.
In three dimensions, 4 scans are sufficient with the masks of Figure 2.8.
Tn n dimensions, algorithms with a minimal number of scans are harder

2.3 Exact Euclidean distance transformations.

2b

Figure 2.8: Masks for Ragnelmam’s 4-scan 26SSED.

to design. Instead, he recommends to use "corner” masgks, i.e. masks
including half of the 2n-direct neighbors, 1 out of 2 for each direction.
He shows that the approximate (2n)SSED algorithm can always be gen-

erated in 2" raster scans over the image 2.

Finally, Embrechts and Roose [44] show how the 4SSED algorithm
can be implemented efficiently on multi-processor computers. Each pro-
cessor applies the 4SSED on a sub-region of the image. Before that,
communications between the processors determine the list of object pix-
els that influence the sub-region although they are located in another
one. The parallelization procedure itself does not introduce any error in
Euclidean DT. The only reason why Embrechts’ algorithm is approxi-
mate is that the local algorithm used by each processor is the approx-
imate 4SSED. Therefore, this parallelization procedure will be further
studied in section 2.3.5 together with other transformations based on
the Voronoi diagram.

2.3 Exact Euclidean distance transformations.

Many different approaches are possible to compute exact Euclidean DT,
i.e. without the errors made by the 4SSED and 8SSED algorithms.
Historically, the first idea was to consider distance transformations as
the result of a filtering process [185, 147, 77, 41] (sec. 2.3.1). A 3 x 3
mask is applied repeatedly on all image pixels until a stable solution is
reached. Unfortunately, this can only be implemented efficiently on a

2For arbitrary dimensions, it is actually both easier and more efficient to extend
Ragnelmam’s ordered propagation algorithm [127] than to use hig corner EDT [128]

26

Chapter 2. Review of DTs.

1010010 12(021201,0(001,0)20

IARUARAARARRIANAN 1101111011121

1110111 1,000 (1,0 11101 (1.1 1.0 (001,020 (1,101 |11
1.010,01,0 11101 1.1 10000 (1,0 110111 201,0(001,0

1,1 0.1 1,1 11000 (11 e loe 1ol 2111]01 [1,1]1.0]0.0 (1.0
10(0010(00]10(11] [20[1.0(0.0]/1.0]0.0(1,0 |11

Figure 2.9: Yamada’s EDT. Left: the 3x3 mask. Center: result after 1
step. Right: result after two steps.

parallel processing array.

A second approach modifies the approximate algorithms in order to
incorporate the useful mechanisms of the parallel processing methods
above, while keeping a reasonable computational cost. This leads to
region-growing [168, 127, 42] (sec. 2.3.2) and raster scanning [112, 146]
(sec. 2.3.3) algorithms.

A third approach extends an algorithm originally proposed by Rosenfeld
[132] for coarser metrics, where columns and rows are scanned indepen-
dently [118, 140] (sec. 2.3.4). Finally, a last approach is based on the
explicit computation of the Voronoi diagram of the object pixels in the
continuous plane [17, 69, 44] (sec. 2.3.5).

2.3.1 Parallel processing.

Yamada [185] combines Danielsson’s 8SED masks (Fig. 2.4) into the
single 3 X 3 mask of Figure 2.9. This masks is applied iteratively over
the whole image. The |dp,|%, |dpy|* descriptor of a pixel at iteration ¢
is computed from iteration ¢ — 1 by adding the mask values to the de-
scriptors of the 9 pixels covered by the mask and choosing the one that
gives the minimum Euclidean distance. This process is iterated until no
pixels change anymore.

Yamada proves that this algorithm is an exact Euclidean DT. Indeed,
the information is propagated with 8-direct neighborhoods, and respects
the order defined by the dist .5 metric. Thus, in Figure 2.5, pixel r is
reached by the propagation front from py at least one step earlier than
by the propagation front from p,. More generally, one can prove that

2.3 Exact Euclidean distance transformations.

27

the propagation, from an object pixel p to any of the pixels ¢ in its zone
of influence, is always possible along the shortest path made of diagonal
steps only, followed by vertical or horizontal steps only.

In [147], Shih and Mitchell consider distance transformations as a gray-
scale mathematical morphology operation. From a binary image f where
object pixels have the value 0 and non-object pixels the value +oc, they
compute the gray-scale distance map g = f & k, by eroding f with a
structuring element % at least as large as the maximum distance in the
image. The weights of this structuring element are the negative of their
distance to the center.

Handling such a large structuring element is of course inefficient. Thus,
they decompose it into smaller 3 x 3 elements as follows:

k(2n+1><2n+1) = max{kl(3x3):k2(5x5):---:kn(2n+1x2n+l)} (2.19)

kipivix2i+1) = kin@x3) @ kiaxs) @ - @ Kiaxa) (2.20)

For instance, with n = 2,

by b by b b
a1 dp a1 bh 3 T b
kexsy = max{ a O a , b z =z =z b }
a1 dp a1 bz 0z x b
by b by b b
(2.21)
by b1 by b b
bl Hh Hh Hh bl b2 bl b2 0 b[]—bl 0
by z z b = W z b D - z -k
h z = =z b b b b 0 by — b 0
b b by b b
(2.22)
where the value of z does not matter, ag = —1, a1 = —v/2, by = —2,

b1 = —v/5 and by = —+/8. In all Ki(2i+1x241) Structuring elements, only
the outer weights matter. In all k34 3) structuring elements, the diag-
onal weights are zero.

28

Chapter 2. Review of DTs.

With this method, the implementation of a k(s;41x2n41) €lements re-
quires ne(n + 1)/2 gray scale erosions. Therefore, it can only be rea-
sonably efficiently implemented on specialized parallel pipelined VLSI
circuits such as in [1].

With Huang [77], Mitchell adapts his above method to the distg
squared Euclidean metric. The decomposition of the structuring ele-
ment becomes much simpler.

kan+ixont1) = Ki(ax3) ® ka3x3) @ ... ® kn3x3) (2.23)
—4i+2 —2%i+1 —4i+?2 (2.24)

—4i+2 —-2i+1 —4i+42

This only requires rz erosions to implement a Euclidean distance trans-
formation that is exact up to distance n. The computational cost is
similar to Yamada’s method.

Finally, in [41], Eggers proves that both Huang’s and Yamada’s paral-
lel DTs can successfully be extended to anisotropic grids and to higher
dimengions.

2.3.2 Sequential processing by propagation.

In the above parallel methods, a lot of computational power is wasted
because, at each iteration, only a small fraction of the processed pixels
actually change values. Ragnelmam [127] and Eggers [42] implement the
above methods efficiently by storing the pixels in the propagation front
in a dynamic list. Vincent [168] proposes an alternative approach where
the propagation front is considered as chain.

In the same paper where he describes the approximate Euclidean DT
by ordered propagation, Ragnelmam [127] proposes an efficient imple-
mentation of Yamada’s parallel algorithm. First, object pixels are put in
a dynamic list. Then, Yamada’s mask is applied only to the pixels taken
from that list. Any neighbor that changes value is itself put into the list
for next iteration. Also, the updating of pixel values is delayed until the

2.3 Exact Euclidean distance transformations.

29

55

L
1Tl T+
[

dpd

Figure 2.10: Eggers’ sufficient propagation neighborhoods. Left: for
D(p) = 0. Right: for D(p) > 0

next iteration, so that all pixels seem to be processed simultaneously as
in purely parallel processing.

Because it only processes the pixels in the propagation front, and be-
cause it also restricts the neighbors it considers to those of Figure 2.6,
this implementation is obviously much faster that Yamada’s. For in-
stance, for a single object pixel placed in the middle of an n x n image,
the computational complexity becomes o(n?) instead of o(n?). Unfortu-
nately, there is not always such a gain in complexity. In the approximate
algorithm, ordered propagation guaranteed that pixels did not propagate
more than once. This time, the propagation is ordered with the dést p.,s
metric, but not with dist, anymore. Therefore, propagation fronts may
follow each other, and some pixels may be updated many times, up to
once per object pixel in the worst case configuration, a oblique line of
object pixels. This brings us back to a o(n®) complexity.

Eggers [42] adapts Huang’s parallel algorithm in a similar way. His
implementation turns out to be even faster than Ragnelmam’s for two
reasons. First, Huang’s masks (eq. 2.24) provide a very efficient way to
compute distances, similar to Leymarie’s improvement of Danielsson’s
algorithms. Secondly, Eggers notices that, for parallel algorithms, one
only needs to support propagation along the path made of diagonal steps
only, followed by horizontal or vertical steps only. Therefore, he uses the
neighborhoods of Figure 2.10. He calls this sufficient propagation.

On the other hand, the propagation order is exactly the same as before,
so that there is still a o(n®) complexity for worst case » x n images.

30

Chapter 2. Review of DTs.

Finally, Vincent [168] - using his experience of the efficient implementa-
tion of mathematical morphology operators [169] - proposes to represent
the borders of the object as chains, and to propagate these chains by
applying dilations repeatedly. The elements of the chains remember the
location of their nearest object pixels, so that the exact Euclidean dis-
tance can be computed. In order to avoid errors as in Figure 2.5, the
propagation isn’t stopped as soon as the propagated distance becomes
larger than the distance of the pixels it reaches, but continues a little
further, until it reaches its value plus one. This idea is similar to Mul-
likin’s in next section.

This approach is obviously tempting because the structure of the chains
should prevent non-desired multiple propagation to occur and keep the
computational complexity low. Unfortunately, the method requires the
chains to be broken at every non-convex part of the object border. And
the worst-case images for propagation DTs, ie. a sloping line or an
empty disk, are made essentially or entirely of non-convex borders, so
that there is no real gain in using chains instead of a simple list of pixels
to represent the propagation front.

2.3.3 Sequential procesging by raster scanning.

In the above section, Ragnelmam’s exact EDT was presented as an ef-
ficient implementation of Yamada’s parallel algorithm. Alternatively,
it could have been presented as an alteration of the approximate EDT
by propagation from the same paper [127]. Similarly, Mullikin [112] and
Shih [146] propose to produce exact Euclidean DT by modifying slightly
Danielsson’s raster scanning approximate algorithm.

Moullikin [112] proposes to process the image twice. First, he applies
Danielsson’s 4SED algorithm, which can leave a few errors. Typically,
he finds about 2% of errors for a 200 x 200 empty disk image. Sec-
ondly, he corrects those errors by applying a modified version of 4SED
where the vectors are remembered and propagated if they are less than
£ longer than the distance at the current pixel. This requires to store,
for each pixel p, the list of all object pixels at a distance between D(p)
and D(p) + . He calls this algorithm ¢VDT, where VDT stands for
Vector Distance Transformation.

Mullikin shows that, with ¢ = v/N/N in N dimensions, VDT imple-

2.3 Exact Euclidean distance transformations.

31

ments the exact Euclidean DT. Actually, he finds the following relations
between £ and the maximum error

Fras = (1= Y01 - evF) (2.25)
N— VN — NEpy,
TNV (2.26)

where N is the number of dimensions. From eq. 2.26, he finds the ad-
equate € to ensure a given maximum acceptable error. This provides
us with a number of trade-offs between e VDT(0) where only exact ties
are stored in the lists and the exact eVDT(1), where all near ties up to
e =V N/N are kept.

Of course, the increased accuracy has a computational cost. eVDT(0)
appears to be 10 times slower than 4SED. £VDT(1) is itself approxi-
mately 10 times slower than eVDT(0) for the test images Mullikin con-
siders. Besides, it has a higher complexity. For n x n images, 4SED and
eVDT(0) are o(n?), but €VDT(1) is between o(n?) and o(n?), depending
on the image.

Shih and Liu [146] also propose to process the image twice, first with
a variant of Danielsson’s 8SED algorithm, then to detect and correct
possible errors. They pre-compute the possible relative locations (p; —
Qx, Py — Gy) for which an error could occur, and find out that those are
extremely rare. For 100 x 100 images, errors can only occur for rela-
tive locations (12,5), (40,12), (48,10}, (54,12), (60,13), (70,12}, (72,12),
(80,14) and (98,14) with 0 < py — ¢y < px— ¢z < 100, and similar results
for the other 8 angular sectors. This means 72 possible relative error
locations out of 200 x 200, i.e. an error ratio of only 0.18%.

Thanks to this low error ratio, Shih suggests to detect possible errors
by checking the distance values found by the approximate DT against
a look-up table made from the above list. The very few possible error
locations are then submitted to additional computations. The compu-
tational cost of the extra detection and correction step is negligible.

Unfortunately, this apparently optimal solution is flawed. In [26], we
show that the possible relative locations for errors made by the 8SED

32

Chapter 2. Review of DTs.

algorithm are far more numerous than computed by Shih. Actually, the
possible error ratio is close to 20% for 100 x 100 images, and climbs to
more than 50% for images larger than 400 x400. This makes the look-up
table approach unpractical for error detection.

It should also be noted that the approximate Euclidean DT algorithm
of section 2 of [146] does not work. Indeed, the 4-scan algorithm uses
twice the same two scanning orders, while Ragnelmam [128] showed that
any raster scanning algorithm for EDT should use at least 3 different
scanning orders to support propagation in all directions.

2.3.4 Independent scanning

In his founding article [132], Rosenfeld proposes an alternative approach
to the generation of the city-block (distog) distance transformation.
The N-dimensional problem is decomposed into N 1-dimensional sub-
problems. In 2D, the distance from the nearest pixel is first computed
in each row independently. Then, these values are used to compute the
distances in each columns. With the distpg metric, as defined in eq.
2.2, both sub-problems have an identical solution: applying the [10 1]
mask back and forth. Paglieroni [118] and Saito and Toriwaki [140] show
that a similar approach can be used with the Euclidean metric.

Paglieroni [118] develops a “unified” DT algorithm, valid for any metric
M that satisfies

distm(p,g) = fllpe — @l Ipy — %) (2.27)
|dp1w| < |dp2w| = f(ldplwla |dpy|) < f(ldPlea |dpy|)
ldp1y| < ldpayl = f(ldpsl, |dpryl) < f(ldpel, |dpayl)

which is true for all the metrics defined in section 2.1, including the Eu-
clidean one. The “row” scan goes back-and-forth across each row and
determines the “nearest object pixel within the row” (NOPwR). The
key to the algorithm of course relies on the up-and-down column scan.

From equations 2.27, one can deduce that if the 2D nearest object pixel
from pixel p(p,,py) is pixel g(q,,q,), then g is the NOPwR of pixel
(pe»@y), in the same column as p and the same row as ¢g. Therefore,

2.3 Exact Euclidean distance transformations.

33

ST Ry ey

169 |41 1] 4 [4] [1]
@ ‘ inf T inf
Tl oL @
25 16| 9 1 g 4 13
25 115 | o] 3| 3| 1| DtPEmin{Rly-py-y) §
0

16

—
(=]

Figure 2.11: Independent scanning. Left: After left-right scan Right
up-and-down scan, finding the value for D(p) by scanning column p,.

checking all NOPwRs in column p, guarantees to find the 2D nearest
pixel for p. Paglieroni implements this check with an up-and-down scan
over each column. He applies a few simple tests to restrict the number
of NOPwRs to consider for each pixel.

Saito and Toriwaki [140] particularize Paglieroni’s algorithm to the
Euclidean metric, in order to restrict further the number of rows to con-
sider for each pixel in the column scans, and therefore reduce the overall
computational cost.

Let us consider the column p, after the “row” scan. Pixel (p,,y) in
row y of that column contains the value R(y) = (ps — g2(y))? where
g(y) is the NOPwR of (p,,y). During the up-scan along the column,
we want to know to which pixels (p,,p,) we should propagate the in-
formation from (p;,y). Saito first notices that if R(y) > R(y + 1), then
the information from row y should not be propagated upwards since
diste(p,q(y)) = R(y) + (py, — y)* > diste(p,qly +1) = R(y + 1) +
(py —y — 1) for any p(py,p,) with p, > y + 1. On the other hand,
if B(y) < R(y + 1), then the information from row y should propa-
gate up t0 Ymes = y + (R(y + 1) — R(y) — 1)/2, the value for which
diste(p,q(y)) > diste(p,q(y + 1)). Therefore, in the up-scan part of
Saito’s algorithm, pixel (p,,y) is propagated to (p;,y + %) until either
R(y) > R(y + 1) Or Yymq, 18 reached. The down-scan proceeds similarly.

34

Chapter 2. Review of DTs.

2.3.5 Voronoi transformation

Recently, a new class of DT algorithms was proposed. It considers dis-
tance transformation as a sub-product of the generation of the Voronoi
diagram in the continuous plane. Obviously, the knowledge of the
Voronoi diagram, i.e. the knowledge of what is the nearest object pixel
for any point in the image plane, is sufficient for a straightforward com-
putation of the DT.

On one hand, working in the continuous plane ensures that the Voronoi
Polygons are indeed connected sets, so that none of the problems en-
countered at section 2.2.2 occur. On the other hand, computers are
not particularly well-suited for working on continuous (non-discretized)
problems. The key to the following algorithms [17, 69, 44] is that one
can efficiently compute the intersection of the Voronoi diagram with a
row or a column of the image. This could be seen as a half-way dis-
cretization, along one axis and not the other. Because they work row
by row, the following algorithms also have similarities with those of the
preceding section.

Breu, Gil, Kirkpatrick and Werman [17] first show that, because the
image pixels are restricted to a limited-size array, and because they are
structured in rows and columns, the Voronoi diagram of the centers of
object pixels can theoretically be computed in linear time, i.e. o(mn) for
an n X m image. Then, they show how this can be done row by row, by
computing the intersection of any row with the Voronoi diagram. Once
again, this is performed in two steps, with an up- and down-scan of the
row. Let us consider the up-scan for instance.

During the up-scan, we compute the intersection of every row R with the
Voronoi diagram of the object pixels located under R, i.e p(pg,py) € O
with p, < R. This intersection is represented as Lz, the list of object
pixels p for which V P(p) intersects row B. The method is based on two
observations.

o for pixels p and ¢ in the sub-image below row R, if p, = ¢, and
Py > gy, then VP(q) does not intersect row R.

o for pixels p and ¢ in the sub-image below row R, if p, < ¢,, then
VP(p) (VP(g)) lies to the left (right) of the mid-perpendicular
between p and g¢.

2.3 Exact Euclidean distance transformations.

36

RO\ VA

Figure 2.12: Voronoi Polygon V P(q) does not intersect line R if pg, >
qry

From the first observation, we conclude that Lz contains at most one
object pixel per column. The object pixels (p,,py) € O with p, < R
and p, > y¥(py,y) € O are the only candidates Cg to belong to Lg.
This list of candidates Cg is easily produced from the candidates Cg_1
and the list of object pixels in row R.

Using the second observation, we can then trim the list of candidates
Cg of pixels ¢ for which V P(g) does not intersect row R. At Figure
2.12, VP(gq) does not reach row R because p and r hide it. The second
observation tells us that, with p, < ¢, < ry, this will happen if pg, > g7,
where pg (§7) is the intersection of the mid-perpendicular of pg (¢r) with
row R, i.e. pg, = R and

% — Py — 2Ry —p)+q — 1y
2-(% _Pw)

and a similar expression for 7. Therefore, pixel ¢ € Cg will not belong
to Lg only if there exists p,r € C(R) such that p, < ¢, < r, and
Py = qT,, L&

Py = (2.28)

(re — go)-(g) — Py — 2Ry —py) +q, — P,)
> (py — %)-(qg - Ti —2.R(gy —7y) + q; - '*";) (2.29)

The procedure to produce the list Ly from the list Cg is then the fol-
lowing. Pixels from Cy are added one by one to Lg. Before actually
adding a pixel r to Lg, equation (2.29) is checked with ¢ the last pixel in
Ly and p the preceding one. The last pixel of Lg is removed iteratively

36

Chapter 2. Review of DTs.

until (2.29) is not satisfied anymore or until Lz only contains one pixel.
Then only, r is added at the end of Lg.

Because each pixel is added or removed at most once in the process,
creating Ly from Cgr is a linear complexity operation. Allocating each
pixel along the row to the correct V P knowing Lz is then also a linear-
complexity operation, because V Ps along row R and object pixels in
Ly are ordered in the same way. Therefore, Breu’s DT has global linear
complexity.

Guan and Ma [69] adapt the above algorithm to another data represen-
tation. Tnstead of using Ly that contains the list of object pixels whose
V P intersect row R, they consider an equivalent list of segments that
partition row R between the V Ps. The main improvement of the method
is that they use Lg_1 to produce Lz instead of using the row-to-row re-
dundancy only when producing Cr. This reduces the computational
time significantly for sparse object images.

For an m x n image with ¢ object pixels, this method has a complex-
ity in 0.O(mn) + 8.0(vmnt). The O(mn) term corresponds to the
computation of the DT from the segments lists. The O(y/mnt) term
corresponds to the creation of the segments lists. Because of the com-
plexity of the computations involved (typically 2.29), this second term is
dominant unless the object image is extremely sparse. For some images
he considers, this step can be up to 30 times slower than the O(mn) step.

Finally, as announced in section 2.2.2, Embrechts and Roose [44] use
similar techniques to implement Danielsson’s 4SED algorithm on multi-
processors machines. The image is divided into sub-images, one per
processor. In order to be able to apply 4SED, each processor needs
to know two things. First the location of the object pixels inside its
own sub-image, secondly the object pixels from other sub-images that
influence it, i.e. the intersection of the border of its sub-image with the
Voronoi diagram of the whole object image.

The intersections of the Voronoi diagram of the object pixels in the sub-
image with the sub-image borders are first computed by each processor
using a technique somewhat similar to Breu’s. From these, the intersec-
tions of the complete Voronoi diagram with the sub-image borders are

2.4 Extended concepis

37

computed, using a number of merging and splitting rules. This merging
and splitting is the only step requiring communication between the pro-
CESs0rs.

Embrechts and Roose find that it is possible to reach a good parallel
efficiency (typically 80%) as soon as the image size is sufficiently large,
i.e. as soon as the cost of the Voronoi diagram computations on the
sub-image borders becomes negligible compared to the 4SED algorithm.

2.4 Extended concepts

In the previous section, we described a number of different methods that
were proposed to solve the same complex problem: computing the dis-
tance from any pixel in an image to the nearest object pixel. In contrast,
several authors explored variations on the definition of this problem. In
this section, we present three such variations.

First, we consider geodesic distances constrained by restricted domains
[122, 167]. Distances are only defined and computed on a part of the
image, that can be either convex or non-convex. Secondly, we present
the k-distance transformation [175], that computes the % distances to
the k nearest object pixels. The usual DT is of course a particular case
of k-DT with k = 1. Finally, we present distances defined on gray-scale
images [139, 5, 170, 108, 152, 156]. On such images, a great variety of
metrics can be defined. We present some of those and an efficient gen-
eral purpose algorithm to compute the related DTs.

2.4.1 Geodesic distances

The geodesic distance between two pixels » and ¢ is defined as the length
of the shortest path from p to ¢g. Suppose P = {p1,p2,...,pn} 15 a path
in a connected domain between pixels p1 and py, i.e. p; and pi41 are
connected neighbors for ¢ € {1,2,...,n — 1} and p; belong to the domain
for all 4. The path length I[{P) is defined as

1(P)= 3 dn (i, pis:) (2:30)

38

Chapter 2. Review of DTs.

1] u

Figure 2.13: Left: chamfer masks and the supported propagation direc-
tions. Right A convex domain on which the two raster-scan chamfer
DT algorithm does not compute the distance transformation

the sum of the neighbor distances dy between adjacent points in the
path. For instance, the city-block metric distcn defined on the rectangu-
lar image domain is a geodesic distance where only 4-direct neighbors are
connected and dy = 1. Similarly, the chess-board metric dist p.,s con-
siders that 8-direct neighbors are connected and dy = 1. The chamfer
metric dist e (3.4) considers 8-direct neighbors to be connected, dy =3
between 4-direct neighbors, and dy = 4 between diagonal neighbors.
Finally, the chamfer 5-7-11 considers that all neighbors within a § x 5
neighborhood are connected, with dy = 5,7 or 11. On the other hand,
with the Euclidean metric dist,, there is a direct path between any two
pixels in the image, which makes the problem non-local and renders it
so much more difficult to compute.

In the previous sections, distances are always defined for every pixel
of the image, i.e. on a rectangular domain. In contrast, Piper and
Granum [122] study geodesic distances defined on any connected do-
main, both convex and non-convex ones. On convex domaing, they show
that the usual two raster scans algorithm of section 2.2.1 does not func-
tion anymore. As illustrated at Figure 2.13, the chamfer masks do not
support propagation in every direction, but only in two 135% angles.

The surprising part should actually be that this algorithm does work on
rectangular image domains. The reason for this is that, in a geodesic
DT, one only needs to support the propagation along one of the paths
of minimal length to get the correct distance value. For any pixel lo-
cated between the up-right and right directions from their nearest object
pixel, the two raster scan chamfer algorithm does provide one (and only

2.4 Extended concepis

39

HEEE | s[afsf2]1

— | M|
— | M|

;| P |w|w|w
| ca
N

i _
[1]

Figure 2.14: Left: a non-convex domain. Right: distance transformation
using the geodesic equivalent of the dist ., metric.

IS

6\7\8\8

one) such path, made of right steps only, followed by up-right step only.
For arbitrary convex domains such as that of Figure 2.13, this particular
path does not always belong to the domain, and another minimal-length
path should be used instead, which is impossible given the available sup-
ported propagation directions.

There are several solutions to this problem. First of all, one could apply
the two-scan algorithm iteratively until no pixel changes value anymore.
Unfortunately, there is no way to predict how many iterations should
be used. Instead, they propose to use 4 different raster-scanning orders
with either 3 or 4 neighbors in each masgk, or only 3 different raster-scans
and masks similar to those used by Ragnelmam [128] at Figure 2.7.

For non-convex domains (Figure 2.14), even 4 raster scans algorithms
do not always reach the whole domain, and would need to be applied
iteratively. Instead, Piper and Granum suggest to use propagation algo-
rithms, starting from the object pixels, then considering their neighbors,
their neighbors’ neighbors, ... They propose two simple implementa-
tions of such algorithms, recursive propagation which is depth-first, and
ordered propagation which is breadth-first. The ordered propagation
algorithm they propose uses the neighboring order, i.e. the geodesic
chess-board distance order. This is suboptimal when another metric is
used.

Verwer, Verbeek and and Dekker [167] propose an efficient algo-
rithm for ordered propagation. The main idea is to scan the pixels in
the domain in the order defined by the metric used for the DT. With

40

Chapter 2. Review of DTs.

s

jsgehe]
[ofa]
ooo

Figure 2.15: Bucket sorting propagation.

a geodesic metric, where the minimal path length is defined as equa-
tion (2.30) with dy > 0, this guarantees that every pixel will only be
propagated once. Therefore the computational complexity of the DT is
optimal, i.e. strictly proportional to the number of pixels.

Scanning the pixels in the metric order is made possible by sorting the
pixels in the propagation front before propagating them. With the met-
rics we consider, there is only a finite number of possible distance values.
Then, bucket sorting has an optimal O(rn) computational complexity
where n is the number of elements to sort.

Practically, there is one bucket bucket(d) per possible distance value d.
Initially, every object pixel is put into bucket(0), all other buckets are
empty. D(p) is set to "0” for every object pixel and to "oc” for every
non-object pixel in the domain. In the propagation phase, illustrated at
Figure 2.15, pixels are taken from the bucket with the smallest value d
for which bucket(d) is not empty. For every neighbor ¢ of the current
pixel p, we suppose that D{g) = D(p) + dn(p, ¢), i.e. that the minimal-
length path (eq 2.30) from the object to ¢ goes through p. If this leads
to a smaller D(g) than currently stored, its value is updated and ¢ is in-
serted in bucket(D(g)). The algorithm stops when all buckets are empty.

The implementation of the above algorithm requires special care. Be-
cause one cannot know a priori the size of the buckets, the memory for
those has to be dynamically allocated. If this is done with classical dy-
namic lists, with one pixel per element, there is at least one memory
allocation operation per pixel in the image. Dynamic memory alloca-

2.4 Extended concepis

41

tion then becomes the major factor in the computational cost. Instead,
memory should be allocated by chunks, with a number ¢ of pixels stored
in each chunk. Verwer analyzes the influence of the chunk size ¢ on
the memory requirements and processing time. He concludes that any
chunk size between 15 and 100 is satisfactory. With ¢ < 15, too much
processing time is wasted in memory allocation. With ¢ > 100, too
much memory is wasted in partially filled chunks. This upper limit is of
course dependent on the image size.

Algso, during the propagation, all buckets are never used simultane-
ously. Actually, when processing bucket(d), only buckets between d and
d + maz(dy) can contain pixels. Therefore, Verwer proposes to reuse
the buckets circularly.

Provided it is carefully implemented, Verwer’s algorithm appears to be
optimal for geodesic distances defined with path lengths as in (2.30).

2.4.2 k-distance transformations

Independently from the research on distance transformations, people de-
fined nearest-neighbor and k-nearest-neighbors (k-NN) rules for multi-
channel data classification [24, 23, 71, 63, 59, 60, 4, 82]. Given a training
set consisting of N prototype patterns (vectors in D dimensions where
D is the number of channels), and the corresponding correct classifica-
tion of each prototype into one of C classes, a pattern of unknown class
is classified as class ¢ if most of the k-closest prototypes are from class
c.

Warfield [175] shows that - with a large number N of prototypes and
a large number F' of patterns to classify - a k-distance transformation
(k-DT) is a very efficient implementation of k-NN classification, pro-
vided each channel is or can be quantized into a reasonable number of
discrete values. First, a synthetic D-dimensional image is created, where
each dimension corresponds to one channel. The bounds of the image
are set so that they cover all possible patterns. Object pixels corre-
sponding to the prototype patterns are inserted and the signed k-DT
is computed over the image. The k-distance map can then be used as
a look-up table to find the k-nearest neighbors of the patterns to classify.

42

Chapter 2. Review of DTs.

With 2 channels, i.e. in 2D, he proposes to do this by adapting Borge-
fors’ chamfer(3:4) algorithm [10]. In D-dimensions (D > 2), he adapts
Ragnelmam’s corner EDT algorithm [128], that requires 2 scans using
corner masks containing I) neighbors each. Both algorithms were de-
scribed in sections 2.2.1 and 2.2.2, respectively. They scan the image
several times with different masks. At their core, the value of a pixel is
updated as the minimum of its old value and the values computed from
those of its neighbors that belong to the current mask.

Instead, Warfield uses a unique identifier for every prototype pattern
(object pixel). At the core of the algorithm, he gathers into a single list
the k identifiers of the current pixel and those of its masked neighbors.
Then, he sorts the list so that he can select the k nearest patterns from it.

With 27 scans using masks of D neighbors, this algorithm requires
O(2PF(D + 1)k) distance computations, where F' is the number of pat-
terns to classify, i.e. the number of points of the D-dimensional synthetic
image. Sorting of the lists of (D + 1)}k nearest patterns for each pixel
requires O(2° F(D+1)k.log((D+1)k)) comparisons. Warfield compares
this to the NN algorithms proposed by Friedman [59] and shows that
k-DT is at least an order of magnitude faster for the type of applications
he considers.

2.4.3 Distance transformations on gray-scale images

If one associates a gray-level image G(p) to the original binary image
containing the object O, it is then possible to define a large variety
of gray-level distance functions. Most of those are defined as modified
geodesic distances, i.e. the distance between pixels p and ¢ is the mini-
mum of the lengths of the paths P : (p = p1,p2, ..., 00 = ¢) linking p and
g where the path length {{P) is defined as

n—1

UP)= Z Fdn(pi pis1), Glpi), Gpig1)) (2.31)

where the choice of the function f allows to define many different dis-
tances. The purpose of this section is by no means to present an ex-
haustive review of gray-level distance functions, but merely to illustrate
the diversity of their possible definitions.

2.4 Extended concepis

43

Rutovitz [138], in 1968, introduced the idea of the gray-weighted dis-
tance transformation, in which the gray-level is associated with height
and the gray-weighted distance is less along paths with lower gray-level
values. In [139] Rutovitz again defines the fall-distance, where the only
permitted paths are those with strictly decreasing gray-values. The set of
points reached by such decreasing paths is known as the fall-set. Vosse-
poel, Smeulders and Van der Broek [174] propose a queueing scheme
to compute fall-distances, somewhat similar to Piper and Granum’s
[122], who show that their own ordered propagation algorithm can be
applied to gray-level distance functions.

Levi and Montanari [94] introduce the gray-weighted medial axis trans-
form (GRAYMAT), where the length of a path is computed as the sum
of all gray-levels along the path. Preteux [125, 124] defines the topo-
graphical distance, where dy (p;, pi+1) corresponds to the slope between
the two pixels. Finally, Toivanen [156] presents the distance trans-
form on curved space (DTOCS) and the weighted distance transform on
curved space (WDTOCS), where dn(p;, pit1) = |G(pi) — G(psa)| + 1
and dn (p;, pit1) = V(G(p;) — G(pi11))? + 1, respectively.

A common feature to all of the above definitions is that, in contrast
with distances from binary images, the influence zone of an object pixel
is usually not convex. Therefore, the above papers that implement the
DT with raster scanning have to do so iteratively. On the other hand,
since those distances are all defined as geodesic distances - i.e. as the
minimum length of the paths joining the pixels - we know that the opti-
mal implementation of all of the above distance functions is the uniform
cost algorithm of Verwer, Verbeek and Dekker [167], described in
section 2.4.1. The only restrictions are that function f in (2.31) should
be positive defined, and that it should be quantified, so that bucket in-
dexes can be computed from the distance values.

To illustrate this, let us consider the well-known watershed transform
introduced by Beucher and Lantuéjoul [5], and for which Vincent
and Soille [170] proposed an efficient implementation by immersion.
Intuitively, the watershed transform is defined as the division of a relief
into its catchment basins. A catchment basin is associated with every
local minimum of the relief. Tt consists of locations such that a water
drop falling on that location would flow downstream towards that min-

44

Chapter 2. Review of DTs.

catchment basing watersheds

--4--- Tlooding level
l

local minima

Figure 2.16: Minima, catchment basins, watersheds, dams and flooding
level

imum. In image processing, the gray-scale level of a pixel, or a function
of it, is considered as an altitude, so that the image constitutes the relief.

An alternative, more algorithmic, definition of watersheds relies on the
"flooding” analogy. We consider that holes are pierced at every local
minimum of the image, and that the relief is slowly immersed into wa-
ter. Starting from the minima of lowest altitude, the water progressively
floods the different catchment bagins. Whenever waters coming from two
different basins meet, a dam is constructed to keep those waters sepa-
rated. After the whole image is flooded, dams separate the catchment
basins completely. They are the watershed lines.

Vincent implements this by first sorting all pixels in the image by in-
creaging gray-level. Essentially, he performs bucket-sorting in two steps.
First he determines the frequency of each gray-level value, which allows
him to allocate the needed memory for each list of pixels. Then, he scans
the image a second time and inserts the pixels in the list corresponding
to their gray-level value.

Next comes the flooding step, illustrated at Figure 2.17. Supposing that
the flooding has reached level h, the pixels of level h + 1 have to be
divided between the catchment basins of level 2 and the new basins
corresponding to the local minima at level h + 1. First, the pixels at
level i + 1 that are neighbors to pixels from a catchment basin at level
h are put into a FIFO (first in first out) queue. Then, the catchment
basins are extended by propagation under the constraint of considering
only pixels at level A+ 1. When several catchments basins of level h are
connected at level i + 1, this procedure separates the resulting basins

2.4 Extended concepis

4b

v s

Figure 2.17: Watershed segmentation of a 3-level image by Vincent’s
algorithm. Upper left: Original image Upper right: flooding reaches
level 1, 3 minima are detected. Lower left: flooding reaches level 2
Lower right: flooding reaches level 3.

at level i+ 1 along the geodesic skeleton by influence zone (SKIZ). The
pixels at level & + 1 that are not reached by one of the catchment basins
must be local minima, and become the seeds of new basins.

Alternatively, Meyer [106, 107, 108] shows that the watershed trans-
form can also be expressed in terms of a topographical distance func-
tion. If points p and ¢ belong to a line of steepest slope between p and ¢
(G(g) > G(p)), the topographical distance is defined as distyyp,(p,q) =
G(g)—G(p). The catchment basins are then the equivalent of the Voronoi
division of the image, where object pixels are the local minima and the
distance considered is distgp,.

Meyer implements this computation by using hierarchical waiting queues,
which allows him to process the image by increasing topographical dis-
tance values. This technique was later adapted by Thiran, Warscotte
and Macq [152] to implement a variation of the watershed segmentation.

46

Chapter 2. Review of DTs.

Clearly, both Vincent’s [170] and Meyer’s [108] algorithms can be seen as
adaptation of the optimal bucket sorting algorithm of Verwer, Verbeek
and Dekker [167].

2.5 Applications

In this section we present of few applications of distance transformations,
within and without the medical image processing domain. This intends
to illustrate their usefulness, but should by no means be considered as
an exhaustive review of DT applications. Distance transformations are
probably too generic a tool anyway for such an exhaustive review to be
possible.

Borgefors [11, 13] proposes to use distance transformations for pattern
motching. In order to find an object in an image, she computes the
chamfer DT from the edges of that image. The object is located at the
minimum of the correlation between the edges of the object and the re-
sulting distance map.

Paglieroni [118] studies the correlation properties of the Euclidean DT.
He shows applications for pattern matching and for stereo vision. In
stereo vision, one aims to find equivalent features in the right and left
images. The distance between the locations of a feature in both images
reveals its depth, i.e. its distance from the camera. The conjugate of
a point in the right image is constrained, by camera parameters and
geometry, to lie on a line in the right image. Tts exact position must
be determined by contextual information. For this, Paglieroni uses edge
matching, i.e. he applies an edge detector on both images, then com-
putes the Euclidean DT from both edge images. The matching criterion
is a composition of the correlation of an edge image with the DT of the
other, and vice-versa.

Mangin, Froin, Bloch, Bendriem and Lopez-Krahe [101] apply a
similar method for the registration of 3D medical images of different
modalities, i.e. Positron Emission Tomography (PET) and Magnetic
Resonance Imaging (MRI).

2.5 Applications

47

Ragnelmam [126], Paglieroni [118] and Huang and Mitchell [77] use
distance transformations in order to implement mathematical morphol-
ogy operators. In mathematical morphology, the dilation of an object O
by a structural element B is defined as

O®B={p+q|pcO, g€ B} (2.32)

In the common case where the structural element is a ball, i.e.

B = {q| distp(g,(0.0)) < dimax} (2.33)
the dilation can be efficiently implemented by thresholding the DT, i.e.

O®B={p|DT(p) < dmax} (2.34)

In [126], Ragnelmam shows that his distance transformation by propaga-
tion is particularly well-suited to implement the morphological dilation
since the DT can be stopped as soon as dun,y is reached.

Danielsson [37], Niblack, Gibbons and Capson [114] and Ge and
Fitzpatrick [64], among many others, show that the DT can be used to
produce another useful morphological operator, the skeleton. Blum [6, 7]
defines the skeleton of an object as the locus where fire-fronts started
from its edges meet. He shows that an equivalent definition is simply
the locus of the centers of maximal disks contained in the object.

As illustrated at figure 2.18, Danielsson [37] finds an approximate skele-
ton with a local test on the Euclidean DT of the object’s edges. A pixel
belongs to the skeleton if the largest inscribed disk centered on it is
included in none of the largest inscribed disks centered on one of its
neighbors. The set of pixels he finds is redundant, both because some
disks can be included inside disks centered on non-neighboring pixels,
and because some disks can be included in the union of several disks.
Niblack [114] uses chamfer DTs on which he detects local maxima,
saddle points, and the steepest uphill paths from them. Ge [64] uses
the Euclidean DT, detects the exact set of centers of maximal disks by
performing additional tests on the set found by Danielsson’s method.
Then, he links the centers of maximal disks in order to produce con-
nected skeletons. The resulting skeletons have all desirable properties:
they have the same connectivity as the figure, they are well-centered,
they are insensitive to rotation and they allow the exact reconstruction

48

Chapter 2. Review of DTs.

Figure 2.18: Skeleton of an object generated using Danielsson’s method.
Left: Original object Center: Distance transformation Right: Skeleton

of the original object.

Euclidean skeletons have a large variety of applications. For instance,
in [15], Bourland uses a 3D skeleton computed from the Euclidean DT
to plan the optimal location of the shots in a radio-surgical treatment.
The optimal locations are either the end-points or cross-points of the
skeleton of the targeted tumor.

Borgefors [14] uses the center of mazimal disks as an efficient tool for
shape representation.

In his paper about watershed segmentation, Vincent [170] suggests that
overlapping objects can be separated by computing the watershed trans-
formation on the negative DT of the edge of the compound object (Fig-
ure 2.19). Thiran and Macq [153] obtain a similar result as they find
the centers of the nuclei in images of cancerous tissues by applying the
mothematical morphology ultimate erosion operator. Obviously, the lo-
cal minima of the DT and the ultimate erosion are identical operators.

In [168], Vincent proposes several other applications, such as comput-
ing Delaunay triangulotions, Gabriel graphs [61], relotive neighborhood
graphs [159], ...

Saito [140] uses the Euclidean DT to compute the 3D Voronoi diagram.
Working on 3D microscopic images of a human liver, he proves that the
shortest path from a portal vein to an hepatic vein is almost constant
whatever point of the volume is considered. He also shows that the por-

2.5 Applications

49

@ Minim:the\neﬁ'r Q

Figure 2.19: Separation of overlapping objects by applying the water-
shed segmentation to the distance transformation of the edges of the
compound object

tal veins lie on or near the borders of the Voronoi diagram derived from
the hepatic veins.

Starovoitov [149] and Warfield [175] use distance transformation for
the analysis of multi-dimensional data-sets. Starovoitov defines an un-
supervised clustering technique. Warfield uses the k-DT as a look-up
table for k-NN classification, as discussed in section 2.4.2.

The main application of the geodesic distance transformation was de-
scribed by Verbeek, Dorst, Verwer and Groen [165] and Lengyel,
Reichert, Donald and Greenberg [93]. By backtracking the distance
propagation, one can find the shortest peth between any point and a
single object pixel, the source of the propagation (Figure 2.20). In par-
ticular, this can be used to control the motion of a robot. The geodesic
DT is computed in the robot’s multi-dimensional state space, where each
dimension corresponds to a possible movement of the robot (translation,
rotation, ...} and the propagation domain is restricted to possible robot
locations.

In [85], Jolesz, Lorensen, Shinmoto, Atsumi, Nakajima, Kava-
naugh, Saiviroonporn, Seltzer, Silverman, Phillips and Kikinis
apply Lengyel’s method to generate the camera movements in an inter-
active virtual endoscopy application.

This concludes our short review of possible DT applications. Among
them, several belonged to the field of medical image processing: those
of Mangin [101], Bourland [15], Thiran [153], Saito [140], Warfield [175]
and Jolesz [85].

b0

Chapter 2. Review of DTs.

Figure 2.20: Shortest path computation. Left: Original mask, source
and target locations. Center: Geodesic distance from s, constrained by
the mask. Right: Shortest Path between s and i, obtained by back-
tracking the propagation of the Geodesic DT.

2.6 Discussion.

Today, distance transformation is a mature domain, in the sense that,
for most, problems, optimal algorithmic solutions are known. The the-
oretical optimal complexity of a DT is obviously the complexity of the
distance image it generates. For an n x n image, that means O(n?) for
usual DTs and O(k.n?) for the k-DT. The aims of this discussion are

e to review the algorithms of sections 2.2 and 2.3 in the light of the
possible applications of section 2.5.

o to discuss which algorithms are optimal and which problems still
require algorithmic improvements.

e to stress the strong and weak points in the existing solutions, in
order to suggest how such improvements can be achieved.

The generation, in two raster scans, of the approximate chamfer DT
obviously has an optimal O(n?) algorithmic complexity. The best values
for the chamfer masks are known, as well as good integer approxima-
tions. Chamfer DT can also be adapted to anisotropic grids, although it
requires to compute the optimal mask values for every new anisotropy
factor. The relative error is less than 8% for chamfer (3:4) masks and
2% for chamfer (5:7:11) masks.

2.6 Discussion.

bl

Figure 2.21: Disks generated with the chamfer(3:4), chamfer(5:7:11) and
Euclidean metric

On the negative side, one cannot improve the precision of the chamfer
DT unless one uses much larger masks, which requires an unacceptable
additional computational cost. Several applications may suffer from
this. For instance, when computing centers of maximal digks, it is im-
portant that the shape of the disks be as circular as possible, which is
only coarsely approximated by chamfer DT, as illustrated at figure 2.21.
Similarly, skeletons generated from a chamfer DT do not have a good
rotational invariance.

Also, for pattern matching applications, faster convergence can usually
be reached if one can use the gradient of the DT in the maximization of
the correlation. As illustrated at figure 2.22, the possible directions for
the gradient of the chamfer DT are restricted to the directions available
in the mask, while the full range of directions would be possible with
the Euclidean DT.

Finally, chamfer DT doesn’t scale well to higher dimensions. While it
can still be generated in two scans over the image, it requires to use
masks that contain 3” — 1 neighbors in D dimensions. In conclusion,
chamfer DT should only be used for applications in 2 or 3 dimensions,
where the precision of the DT is not a crucial parameter.

The approximate Euclidean DT algorithms of section 2.2.2 also have
an optimal O(n?) algorithmic complexity, both for the raster scanning
and for the ordered propagation implementations. ITmplemented care-
fully, their computational cost is actually nearly as low as that of chamfer
DT, with a much better precision. Errors only occur in a few locations
while most of the distances are computed exactly.

b2

Chapter 2. Review of DTs.

Figure 2.22: Direction of the gradient of the distance in the images
of Figure 2.21. Left: chamfer(3:4). Center: chamfer(5:7:11). Right:
Euclidean.

Also, because it can be computed using only direct neighbors and not
the diagonal ones, it scales quite well to higher dimensions. In D di-
mensions, one only needs to consider 2.D neighbors. Unfortunately, the
raster scanning algorithm then requires 2P scans. Instead, one should
use the ordered propagation algorithm as soon as D > 2. This algorithm
is optimal.

On the negative side, these algorithms still don’t provide a perfect Eu-
clidean DT. For some applications, the non-systematic nature of the
errors can cause problems. For instance, when one implements the
morphological dilation, using (2.34) and the 8SED algorithm, of object
O = {p1,p2,p3} in figure 2.5 by a ball B of size 13, pixel ¢ is mistakenly
not included in O @ B. If one then applies a morphological erosion with
the same ball - i.e the dilation of (O & B)*, the complement of O® B -
the error is not repeated because there is no unfortunate arrangement of
object pixels in (O@ B)*. Therefore, the closing Oe B = (0@ B)& B does
not include pixel ps. This contradicts a fundamental property of open-
ings and closings in mathematical morphology, that OcB C O C Qe B.
For gimilar reasons, the exact reconstruction of the original object is not
guaranteed from skeletons generated using an approximate Euclidean
DT.

The precision of the exact Euclidean DT is of course perfect. Unfortu-
nately, there is still no optimal (in terms of computation time) algorithm
to produce it, which restricts its use in practical applications. Let us
consider the five families of algorithms described in section 2.3.

2.6 Discussion.

b3

First, the parallel EDT is obviously unpractical on general purpose com-
puters. It requires as many scans over the image as the largest distance
in the image, i.e. has a O(r®) complexity.

Among the exact EDT by propagation, Eggers’ [42] algorithm is the
most efficient. Unfortunately, in order to be exact, it can not use the
optimal ordered propagation, but instead the natural propagation order
of 3 x 3 neighborhoods. That can lead to multiple updates by successive
propagation fronts. In the worst case - an oblique line with a 22, 5° incli-
nation - it has a O(n?) complexity too. Practically, the computational
cost is highly image-dependent, sometimes as low as that of approximate
EDT, sometimes orders of magnitude slower.

The only raster-scan exact EDT - Mullikin’s [112] e VDT(1) - has a com-
plexity between O(n?) and O(n3) and is several orders of magnitude
slower than the approximate EDTs.

Among the independent scans algorithms, Saito’s [140] algorithm is the
most efficient. The exact computational complexity of the method isn’t
assessed, but experiments show that it is more than O(n?).

Finally, the algorithms explicitly based on the computation of the Voronoi
diagram of the object pixels do have an optimal O(rn?) complexity. Un-
fortunately, the computations involved are so complex that the practical
computational cost ends up being much larger than the cost of approx-
imate EDT, Eggers’ or Saito’s algorithms.

In conclusion, none of these approaches leads to an olgorithm that is both
fast and asymptotically optimal. Fast algorithms, such as the approzi-
mate ones, Eggers’ or Saito’s, require that only o few simple operations
be performed on each pizel. On the other hond, asymptoticelly optimal
algorithms require to explicitly teke into account the continuous nature
of the Voronoi diegraom. In chopters 3, § and 6, we show how both ap-
proaches can be combined efficiently.

The optimal algorithm to compute a Geodesic DT, constrained by a
non-convex domain, was presented by Verwer [167]. The ordered prop-
agation by bucket sorting has a O(n?) complexity, and the cost of the

b4

Chapter 2. Review of DTs.

Figure 2.23: Shortest path through a maze. Left: computed with a
chamfer geodesic DT Right: on a continuous plane.

dynamic data structure it requires can be minimized with a careful im-
plementation.

On the other hand, the discrete geodesic DT is only a poor approxi-
mation of its continuous equivalent. In particular, the shortest paths
it generates are restricted to steps along the directions available in the
mask used during the propagation. For instance, for the commonly used
chamfer(3:4) geodesic DT, paths are restricted to horizontal, vertical
and 45° diagonal steps, as illustrated at figure 2.23.

In chapter 8, we show how a quasi-Fuclidean geodesic DT can be gen-
erated, using balls of any chosen size in the propagation process, while
keeping the optimal computational cost of the propagation algorithm.

Finally, the &-DT algorithm proposed by Warfield [175] is obviously
non optimal, it requires O(2°n?(D + 1)k) distance computations and
0(2PnP(D + 1)k.log((D + 1)k)) comparisons on a nn X 2 X ... x 1 (D
times) image. It is also not an exact DT, since it is based on Ragnel-
mam’s approximate EDT [128], but this does not matter much in the
k-NN classification application.

In chapter 10, we show thet k-DT can be implemented optimally, i.e
with O(nP.k) distance computations and O(n”.D.k) comparisons.

Chapter 3

Euclidean distance
transformation by
propagation

In this chapter, we explore a first approach to the improvement of ez-
act Euclidean distance transformetion algorithms: improving the EDT
by propagation. In order to keep the computational cost low, one has
to order the propagetion according to the metric order. This potentially
produces errors in the resulting EDT. The properties of these errors are
analyzed, in porticulor their dependence on the size of the neighborhood
used during the propogation. Thanks to these properties, we show how
an exact EDT can be produced by using neighborhoods of increasing size,
applied on restricted sets of pizels. The computational cost and complez-
ity of the algorithm is then evaluated. It shows a significant improvement
over the methods proposed by Saito and Fggers. In order to illustrate
potential applications, we show that it can be used to implement mathe-
matical morphology operators on binary images.

3.1 Propagation with a single neighborhood

In a propagation algorithm, the pixels should ideally be updated only
once, when they receive their final value. In other words, the propaga-
tion from one object pixel should be restricted to the pixels of its tile
in the Voronoi diagram. In order to achieve this, the propagation order
should be the same as the metric order. In other words, the pixels in the

b6

Chapter 3. EDT by propagation

propagation front should be sorted by increasing distance value before
being propagated. As shown by Verwer [167] for constrained chamfer
DT and Ragnelmam [127] for Euclidean DT, this can be accomplished
by bucket sorting of the pixels in the propagation front.

Instead of using a single list, pixels to be propagated are stored in a num-
ber of buckets, one for each possible distg(p, ¢) value. Indeed, distg(p, ¢)
is an integer if p and ¢ are located on an integer grid. Thus, it is an ap-
propriate choice for the index d for the buckets, that are processed by in-
creasing index values. For each pixel p in the propagation front, we store
its coordinates (py,py) and its coordinates (dpy, dpy) = (Pz — @os Py —)
relatively to the nearest pixel ¢ of the object O. This gives the follow-
ing algorithm, which we call "Euclidean Distance Transformation by
Propagation using a Single Neighborhood”, or EDT-PSN.

Algorithm 1 EDT by Propagation with e Single Neighborhood

Input: A binary image I with an object O in it.
Output: An image D such that D(p) = mingco{distz(p, q)}

for all p € I do {Initialization}
if p €O then
D{p)+0
put (p, (0,0)) in bucket(0)
else
D(p) + M {M is an upper bound for D(p)}
end if
end for
d+ 0;

repeat {Main loop}
for all (p,dp) in bucket(d) do
for alln € N do
Dpew +— distg(dp +n)
if Dpew < D(p+n) then
D(p+n) + Dpew
put (p +n,dp+ n) in bucket(Dy,p)
end if
end for

3.1 Propagation with a single neighborhood

57

- mlElay

Figure 3.1: Directed neighbors to consider when using 4-direct neigh-
borhoods

end for
d+d+1
until all buckets are empty

If N is the 4-direct neighborhood, we have distg(dp +n) < (Vd+1)? =
d+ 2.4/d + 1. Thus, the termination condition - that all buckets are
empty - is true when the last (24/d 4 1) buckets are empty. With the
8-direct neighborhood, the whole bucket structure is empty as soon as
the last 24/2d + 2 buckets are empty.

As pointed our earlier [167], an efficient implementation of the buckets’
data structure requires a memory allocation in chunks for the dynamic
lists. In what follows, we use chunks of 16 elements, but a large range
of values is acceptable, as discussed at section 2.4.1.

Also, special care should be given to the efficient computation of dist g (dp+

n). Leymarie [95] recommends to use eq. (2.18), which only requires to
use additions, one shift and one increment. Tnstead, we routinely use
lookup tables for sqg[+i] = 42, so that diste(dp + n) = sqldps + ng] +
s¢[dpy + ny). This has a similar computational cost and is more general
when n belongs to a large neighborhood, as we use later.

Finally, as shown by Ragnelmam [127], at most 2 neighbors need to be
considered in the propagation phase, as soon as d > 1. For the 8-direct
connectivity, this means the neighbors of figure 2.6. The neighbors for
the 4-direct connectivity are found in figure 3.1.

b8

Chapter 3. EDT by propagation

Figure 3.2: A typical error made by an approximate EDT using the 3 x3
neighborhood. Object pixel ¢a is hidden from pixel p by object pixels ¢1
and g3, that are closer to p1 and p3, respectively.

3.2 Errors in approximate EDT

Unfortunately, as pointed out at section 2.2.2, the above algorithm does
not guarantee an exact Euclidean DT. In order to be able to detect and
correct those errors, let us analyze a few of their properties.

3.2.1 Errors with a 3 x 3 neighborhood

Let us first consider that the approximate EDT was produced using a
3 x 3 (8-direct) neighborhood, such as in Danielsson’s 8SED [37], Ley-
marie’s [95] and Ragnelmam’s [127] algorithms. Either in raster scan-
ning or by increasing distance order, these algorithms propagate the
information from sources - the object pixels - to the rest of the image.
As illustrated at figure 3.2, errors occur when the source of a pixel differs
from the sources of all its 8-direct neighbors. p(0,0) is closer to ¢ (Z2,ya)
than g1 (z1,31) or g3(x3,y3), but pixels p1(1,0) and p3(1,1) are not.

In general, since ¢ is the source of p, we have

3.2 Errors in approximate EDT

b9

Figure 3.3: Relative locations (dz,dy) for which it is possible that an
error occurs, with 0 < dz < 200 and 0 < dy < 200.

m% +y§ < m% + y% (3.1)

m% +y§ < m% + y§ (3.2)

Similarly, since ¢ is the source of p1,

(@1 - 1)? +97 < (@2 — 1) +43 (3.3)

and g3 the source of p3,

(23— 1)+ (y3— 1)® < (32— 1)* + (32 — 1) (3.4)

In [146], Shih restricts these conditions further by setting implicitly
1 = 2+ 1 and x3 = 2 — 1, and considers strict inequalities for eq.
3.3 and 3.4. Therefore he misses many possible errors, including that of
Figure 3.2, with ¢1(17,1), ¢2(15,8) and ¢3(13,11).

Instead, we find the integer solutions of equations 3.1 to 3.4 by exhaus-
tive search. In order to know if an error could occur at the relative
location (zs,y2), we check eq. 3.3 for all integer couples (z1,y,) with

0<z1 <yz3+y2+1 (3.5)

Vit rl-al <y <\Jadrpd+1-ad+1 (3.6)

Equation (3.6) guarantees that (3.1) is fulfilled. If we can find such a
couple (x1,y1) satisfying (3.3), and if we find another couple (x3,ys)

60

Chapter 3. EDT by propagation

Poesible error raloe for the 35ED algorithm
T T T T T

g & & & 8

Perceniage of [dx,dy) couples for which an errer could ooour

=
T

L L L L L L L L L
Q 100 200 300 400 500 500 i 300 00 1000
EXITIUM e dy) Souple

Figure 3.4: Possible errors ratio for various image sizes

satisfying (3.2) and (3.4) in a similar way, then it is possible that errors
do occur for the relative location (xg,ys).

Applying this exhaustive search for all couples (2, y2) within a 200x 200
range, we find the result of Figure 3.3, where black pixels correspond to
possible error locations. Defining the possible errors ratio as the per-
centage of possible error locations among all locations, we obtain the
values of Figure 3.4, i.e. 20% for a 100 x 100 image, and more than
50% for images larger than 400 x 400. Obviously, possible locations are
not uncommon. In particular, it means that an “error locations lookup
table” approach to detect errors, such as suggested by Shih [146], is not
practical.

3.2.2 Influence of the neighborhood size

Let us now consider any neighborhood N. Similarly to the previous
section, an error may occur at a relative location (dp,, dp,) if, for every
neighbor n € N, one can find (dg,, dg,) such that

dq, +dg, > dp} +dp,, (3.7)

(dge — nw)2 + (dQ‘y - ny)2 < (dps — nw)2 + (dpy - ny)2 (3.8)

3.2 Errors in approximate EDT 61

Once again, the possible errors relative locations can be determined by
exhaustive search, for any neighborhood N. In particular, we are inter-
ested in the shortest distance for which an error can occur when com-
puting the approximate DT with a neighborhood N. This is determined
as follows.

Algorithm 2 Compute the closest error location (dpy, dpy) for a neigh-
borhood N

Input: A neighborhood N.
Output: dp.p and D, = distg(dperr), the smallest error location
Dopr +— o
dpy +— 1
repeat
for dp, = 0 — dp, do
D« dp? + dpg
if D < D,y then
for alln € N do
test(n) + FALSE
end for
for dgy = 0 — (int)y/D +1 + 1 do
dg, = (int) /D +1—dg’
for all n e N do
if distg(dg —n) < distg(dp —n) then
test(n) +— TRUE
end if
end for
end for
if test(n)¥n € N then
Depr +— D
dPerr < dp
end if
end if
end for
dpy +— dpy + 1
until dp? > D,,.,

The results for the 4-direct neighborhood and several N x N neighbor-
hoods are found in table 3.1. In the right column of this table, we also
find the relative location of the nearest pixel with the same source as the

62

Chapter 3. EDT by propagation
Neighborhood Smallest error Non-propagating pixel
(dpx,dpy) diste | (dpy,dpy) diste
4-direct (2,2) 8 (1,1) 2
3x3 (12,5) 169 (10,4) 116
x5 (25,7) 674 (22,6) 520
Tx7 (48,10} 2404 (44,9) 2017
9x9 (72,12) 5328 (67,11} 4610
11 x 11 (108,15) 11889 | (102,14) 10600
13 x 13 (143,17) 20738 | (136,16) 18752
15 x 15 (192,20) 37264 | (184,19) 34217
17 x 17 (238,22) 57128 | (229,21) 52882
19 x 19 (300,25) 90525 | (290,24) 84676
21 x 21 (357,27) 128178 | (346,26) 120392
23 x 23 (420,29) 177241 | (408,28) 167248
25 x 25 (500,32) 251024 | (487,31) 238130
27 x 27 (574,34) 330632 | (560,33) 314689
29 x 29 (667,37) 446258 | (652,36) 426400
31x31 (728,40) 591424 | (752,39) 567027

Table 3.1: Errors closest to (0,0) for the 4-direct and a number of N x N
neighborhoods. The first two lines correspond to the errors illustrated
at Figure 2.5

pixel where the error occurs. Using this table, we know the size of the
neighborhood to consider to produce an exact EDT up to a given dis-
tance. For instance, if we want it to be correct up to distg(dp) = 1000,
we find in table 1 that 1000 is between 674 and 2404. Therefore, a 7 x 7
neighborhood is large enough to ensure an exact result, but a 5 x &
neighborhood might be too small.

Unfortunately, increasing the neighborhood size to produce an exact
EDT soon leads to a prohibitive computational cost when the image
gize increases.

3.2.3 Influence of the propagation process

Instead of considering all possible relative error locations as in the pre-
vious section, we now restrict ourselves to the errors occurring for the
particular image on which algorithm 1 is performed. Intuition tells us
that errors only happen near pixels that do not propagate.

3.2 Errors in approximate EDT

63

N2(p)

N1(p}

VP(g)

Figure 3.5: § =V P(q) N(N2(p)\N1(p})

More formally, let N1 and N> be two neighborhoods such that Ny C Na.
Let D1 and Dy be the resulting signed distance maps generated using
N, and N, respectively. If there is a pixel p such that D1(p) # Da(p),
i.e. D1i(p) is inexact and D1(p) > Da(p), then there is a pixel r € Na(p)
such that either D1(r) # Da(r), either D1 (r) was not propagated using
Ni.

To prove this, let us first consider that pixels belonging to a Voronoi poly-
gon VP(g) can only propagate to other locations belonging to V P(g)
with the same ¢, which is what ordered propagation aims to achieve. Let
us consider ¢ such that p € VP(g), i.e. let g be the nearest object pixel
to p. Let us consider the set S =V P(g) N(N2(p)\N1(p)) (Figure 3.5).
We know this set is not empty since at least one pixel propagated to p
using N5 but none did using N;. Let us suppose that all pixels r € §
have a correct value and were propagated using N1. Since propagation
implies a strict increase of the distance value, at least one pixel r € §
must propagate to a pixel ' € §, i.e. a pixel r € VP(¢)(| N1(p). This
is impossible since ' would then have been propagated to p using Ny,
and D1 (p) would then be correct.

In practice, the ordered propagation of algorithm 1 allows propagation
to locations that are either in the same VP or in the neighborhood of
this V P. Nevertheless, the above proof remains correct since propagated
pixels located in the wrong V P are corrected before being propagated,
and do not propagate themselves. Q.E.D.

64 Chapter 3. EDT by propagation

3.3 Propagation with multiple neighborhoods

From the above properties, we can design a new exact EDT algorithm by
propagation, using multiple neighborhoods. A fast approximate DT is
first produced using the smallest neighborhood possible. Then, non-
propagating pixels are further processed using larger neighborhoods,
whose size are determined from table 3.1 to ensure that the resulting
DT is error free.

3.3.1 The PMN algorithm

The ” Euclidean Distance Transformation by Propagation using Multiple
Neighborhoods”, or EDT-PMN works as follows:

Algorithm 3 EDT by Propagation with Multiple Neighborhoods

Input: A binary image I with an object O in it.
Output: An image D such that D(p) = mingep{diste(p, ¢)}

for all p € I do {Initialization}
if p €O then
D{p)+0
put (p, (0,0)) in bucket(0)
else
D(p) + M {M is an upper bound for D(p)}
end if
end for
d+ 0;

repeat {First loop}
for all (p,dp) in bucket(d) do
propagated +— FALSE
for alln € N do
Dnew — d’astE(dp +n)
if Dpew < D(p+n) then
D(p+n) + Dpew
put (p +n,dp+ n) in bucket(Dper)
propagated +— TRUE
end if
end for

3.3 Propagation with multiple neighborhoods

6b

if propagate = FALSE then
put (p,dp) in buf fer
end if
end for
bucket(d) + buf fer
d+—d+1
until the last 2v/d + 1 buckets were empty

Arpx — @
for d = 0 — dmax do {Second loop}
N < Nmin(d) {Smallest needed neighborhood, from table 3.1}
for all (p,dp) in bucket(d) do
for all n € N do
Dnew + distg (dp +n)
if Dpew < D(p+n) then
D(p+n) + Dpew
put (p +n,dp+ n) in bucket(Dye)
end if
end for
end for
end for

In this algorithm, pixels p that do not propagate in the first propagation
loop remain in the bucket structure. This is accomplished by storing
them in a temporary buffer list, that becomes bucket(d) after all pixels in
bucket(d) were processed. During the second propagation, the size of the
neighborhoods Nois(d) increases as the right-most column of table 3.1.
For 2 < d < 116, Nyin(d) is the 3 x 3 neighborhood. For 116 < d < 520,
it is the & x 5 neighborhood, and so on.

3.3.2 Oriented neighborhoods

A final improvement to the algorithm is possible using the the following
observation.

For a pixel p, whose relative location from the nearest object pixel is
(dpy, dpy), the only neighbors (n,,n,) that need to be considered are
those ”in the same direction” as (dp,,, dp,). More precisely, if we consider
dp, and dp,, positive without loss of generality, the neighbors (ng,n,) to
consider are such that

66

Chapter 3. EDT by propagation

nx

p1 ny

nx

Figure 3.6: pixel p only needs to be propagated to neighbors within the
grey area

dpy dpy

(re 1)'dpx <ny <1 +nx.dpx (3.9)
To prove this, let us consider figure 3.6. We wish to determine which
neighbors (n;, ny) should be considered when propagating pixel p, whose
location relative to the nearest object pixel ¢ is (dp,,dpy). Let us first
consider the upper bound. If ¢ is also the nearest object pixel for
p1 = p+ (0,1), the upper bound for neighbors of p; is higher than
for those of p, which guarantees no neighbor will be missed.

On the other hand, we consider that ¢; # g is the nearest object pixel
of p1. The limit between the tiles VP(g) and VP(g,) is on the mid-
perpendicular of ¢1g. This mid-perpendicular would be a good upper
bound for neighbors of p, since the information from ¢ only needs to be
propagated to pixels belonging to V P(g). This mid-perpendicular itself
is bounded by the second inequality of (3.9). Indeed, it intersects pp;
between p and pi1, thus below p1. Also, its angle must be lower than
dpy /dp,. Otherwise, it would cross q1¢ between ¢ and ¢1, which is im-
possible for the mid-perpendicular of ¢1¢ with ¢; on an integer location.
The proof for the lower bound is similar.

Applying this property reduces the computational cost of applying a
n x n neighborhood from O(n?) to O(n). The ”Euclidean Distance
Transformation by Propagation using Multiple Oriented Neighborhoods”,
or EDT-PMON uses the same initialization and first propagation as al-

3.4 Computational Complexity 67

gorithm 3. The second propagation works as follows:

Algorithm 4 EDT by Propagation with Multiple Oriented Neighbor-
hoods

for d =0 — dwax do {Second loop}
for all (p,dp) in bucket(d) do
if 0 < dpy < dp, then {First octant}
sta+0
end < 1 + stepend
for n, =1 = nuin(d) do
for ny = sta — end do
Dpew + distg(dp +n)
if Dypey < D(p+n) then
D(p+n) < Dpew
put (p+n,dp +n) in bucket(Dpew)
end if
end for
sta « sta + 2
end < end + @ifi—l
end for
else
... {The other 7 octants are treated similarly}
end if
end for
end for

One should notice that dp,/(dp, + 1) is added to end instead of adding
dpy /dp, as suggested by the upper bound of (3.9). Indeed, in algorithm
1, the information from object pixel ¢ may propagate one step out of
VP(q) before it stops propagating. Using dpy/(dp, + 1) relaxes the
upper bound on rn, and addresses this problem.

3.4 Computational Complexity

Comparing the complexity and computational costs of DT algorithms
is a complex task. For n x n images, approximate algorithms such as
Danielsson’s [37], the chamfer DT [10], Leymarie’s [95] or Ragnelmam’s

68

Chapter 3. EDT by propagation

Figure 3.7: Test images where object pixels are black and the DT is
computed at every white pixel. The size of the “circle” image varies
from 200 x 200 to 2000 x 2000. The orientation of the other two images
varies from 0 to 90°.

[127, 128] have a fixed O(n?) cost regardless of the image content. Ya-
mada’s parallel algorithm [185] has a O(d.n?) cost, proportional to the
maximum distance d found in the image. More complex exact algo-
rithms such as Ragnelmam’s [127], Eggers’ [42] and Saito’s [140] have
costs that are highly dependent of the image content and can vary be-
tween O(n?) and O(n3). For those, experiments give a better knowledge
of their complexity than theoretical considerations.

Among the methods described in chapter 2, those of Eggers and Saito
appear to be the fastest exact Euclidean DTs. They are used here as the
benchmark against which our algorithms are compared. Three versions
of our algorithms are considered in this comparison: the approximate
PSN and the exact PMN and PMON algorithms. In the PMN algo-
rithm, only the fourth of the neighborhoods N in the same direction as
(dpz, dpy) is used.

The choice of images on which the tests are performed is subjective and
may dramatically affect the results. We perform 3 tests, illustrated at
Figure 3.7. Test 1, suggested by Saito, is an image filled with an empty
disk, whose gize varies from 200 x 200 to 2000 x 2000. Test 2, suggested
by Eggers, is made of random squares covering 15% of the image in total,
with an orientation varying between 0° and 90°. Test 3, our suggestion,
is the worst case scenario foreseen by Eggers and Ragnelmam for propa-
gation DTs: a straight line across the image with an orientation varying
between 0° and 90°. Images for tests 2 and 3 are 1024 x 1024 pixels large.

3.4 Computational Complexity

69

time per pixel

1 1 1
200 400 BOD 500 1000 1200 1400 1600 1800 2000
image size {nxn)

Figure 3.8: Testl: Saito’s empty circle image. Note the logarithmic scale
for the CPU times.

The algorithms were implemented in C on a Pentium IT computer run-
ning at 233 MHz. We compare the CPU time required by each algorithm.
Results are shown at Figures figure 3.8 to figure 3.10 for tests 1 to 3,
respectively.

Test 1 (figure 3.8) illustrates the CPU time per pixel for images of in-
creasing size. An optimal O(r?) algorithm should therefore give a con-
stant result. It is of course the case of the approximate PSN algorithm.
PMN and PMON display a very slight increase with the image size, but
the relative cost compared to PSN remains less then a factor 2, even for
2000 x 2000 images. PMON is faster than PMN as soon as the image is
larger than 400 x 400. Saito’s and Eggers’ algorithms both have a com-
putational cost per pixel increasing with the image size. Actually, their
complexity is O(n?) for n x n images. Nevertheless, Saito’s algorithm is
as fast as PMN or PMON for small images (rn < 400).

Test 2 gives more complex results. All algorithms work faster on images
where the squares are either oriented at 0°, 45° or 90°, and slower for
orientation near to 22,5 and 67.5%. This effect is more accentuated for

70

Chapter 3. EDT by propagation

2.6

24

22

ha

CPU time (sec)
[+

1.6

4] 10 20 30 40 a0 ED 7o &80 a0
squares orientation

Figure 3.9: Test2: Eggers’ random squares

Eggers’ and Saito’s. In average, PSN is the fastest, requiring 1.33sec.
PMN follows (1.54), then PMON (1.60), Eggers (1.82) and Saito (2.14),
but these are not significant differences.

Test 3 shows the worst-case scenario for the propagation methods of
Ragnelmam and Eggers, for which they are known to have a O(n®)
complexity. As in test 1, the disparity between CPU costs is such that
the results are here displayed using a logarithmic scale. Eggers’ DT per-
forms very poorly for any orientation but the horizontal, vertical and
45 diagonal. Saito’s DT performs reasonably well for orientations be-
tween 0 and 45, but very poorly for orientations around 60. In average,
Eggers and Saito are respectively 14 and 7.5 times slower than PSN. Tn
the worst orientation, Eggers and Saito are respectively 25 and 28 times
slower than PSN. On the other hand, PMN and PMON only show a
limited influence from the orientation. In average, they are 1.45 and 1.3
times slower than PSN. Even in the worst case, they are still less than
twice slower than PSN. In contrast with the results of test 2, PMON
out-performs PMN for all orientations.

3.4 Computational Complexity

71

4] 10 20 30 40 a0 ED 70 &0 an
line erientation

Figure 3.10: Test3d: the worst case straight line.

In Figure 3.10, let us also note that Saito’s algorithm is the only one that
has a non-symetric behaviour around 45°. This can easily be understood
if one considers that all other algorithms treat all axis in the same way,
while Saito’s chooses to process the image first along one axis, then along
the other. This choice can have a major influence on the computational
cost. Unfortunately this is data dependent, which precludes the choice
of an ordering of the axis that would be optimal in all cases. This issue
is further studied for 3D data in chapter 6.

In conclusion, both PMN and PMON seem to have a O(n?) complexity.
Even in the worst case, the cost required to produce the exact EDT is
less than double the cost of the approximate PSN. PMON out-performs
PMN when the DT includes very large distance values, but its com-
plexity is not justified for smaller images'. Both algorithms are major
improvements over the methods of Eggers and Saito.

IThis remark may be hardware dependent. In particular, PMON should out-
perform PMN in all cases on a SUN Sparc workstation, where the relative cost of the
floating point operations is lower.

72

Chapter 3. EDT by propagation

3.5 Using the Euclidean DT to implement math-
ematical morphology

3.5.1 Mathematical morphology operators

Dilation and erosion are the basic operators of mathematical morphology
[143, 144]. The dilation of a set of points X by a structural element B
is written X @ B and is defined as

X®B={z+blr € Xand be B} (3.10)

The erosion, written X & B, is the dual of dilation, i.e. the complement
of a dilation performed on the complement set of X. Other morpholog-
ical operators can be derived by combining dilation and erosion. For
instance, the opening and closing are defined as

XoB = (XoB)®B (3.11)
XeB = (X®B)oB (3.12)

Symmetrical and circular structural elements (SE) play a central role in
mathematical morphology in the continuous plane, because they provide
an isotropic treatment of the image. On the other hand, for digital
images, circular SE are rarely used because other shapes are easier and
faster to implement.

3.5.2 Fast implementations

Fast implementations of the dilation operator usually rely on a property
of this operator. For instance, dilation is an associative operation, i.e.

X¢BoB)Y=(X®eB)aoB (3.13)

Some structural elements can be decomposed into simpler elements, as
illustrated at figure 3.11. Applying the dilations with the smaller ele-
ments iteratively instead of the large SE at once reduces the complexity
of the dilation. The dilation of an » x n image by a SE of radius d
has a O(d.n?) complexity. In addition, mono-dimension dilation can be
performed in O(n?), so that the square SE’s complexity is also O(n?).
Unfortunately, the square and diamond SE are very poor approxima-
tions of a circle. A common improvement is to use a combination of

3.5 Using the Euclidean DT to implement mathematical morphology 73

Figure 3.11: The square and diamond structuring elements are separa-
ble.

both, which leads to an octagonal SE.

Another property that can be used to implement, the dilation efficiently
is

X®B=X|J(6(X)® B) (3.14)

where §(X) is the edge of X. This is valid for any connected SE that
contains (0,0). If { is the length of the contour of X, then the computa-
tional complexity is reduced to o(l.d) for a SE of radius d, plus a small
O(n?) term to determine the pixels belonging to 6(X).

By combining the properties of equations (3.13) and (3.14), we have
the basis for contour-processing algorithms for decomposable SE as in
Van Vliet and Verweer [173], whose complexity is further reduced to
O(lmax-d) where Imgax is the maximal size of the contour during the itera-
tions with elementary SE. Finally, Vincent [169] proposes an algorithm
using both contours §(X) and §(B), of the set X and the structural el-
ement. This algorithm has a complexity proportional to the product of
the number of pixels in each contour, which means O(l.d) for a circu-
lar element of size d. It can also be expressed as O(A) where A is the
cardinal of (X @ B)\X where \ is the set difference, i.e. X\Y = XN Y*

A third approach applies to structuring elements B that are balls, that
are defined as

B = {b|distar (b, (0,0)) < d} (3.15)

74

Chapter 3. EDT by propagation

then, the dilation by B can also be expressed as the threshold of a
distance transformation, i.e.

X @ B={z|DT(x) <d} (3.16)

where DT(x) is the distance transformation from object X. The square
and diamond SE can be considered as balls for distances defined using
the dists and dists metrics respectively. Since the corresponding DT
algorithms are of a O(n?) complexity, so are the dilations.

Ragnelmam [126] proposes to combine contour processing and DT
thresholding. He uses an algorithm similar to PSN, and stops it as
soon as d is reached. The computational complexity is of course O(A)
where A is the cardinal of (X @ B)\X, i.e. the set of points reached
by the propagation. Unfortunately, PSN or Ragnelmam’s variant of it
are approximate EDTs. As mentioned in chapter 2, the non-systematic
errors of these algorithms can lead to situations where

X ¢ (XeB) (3.17)

which contradicts the axioms of mathematical morphology.

3.5.3 Morphological dilation using PMN

The above problem can of course be solved by using an exact EDT by
propagation algorithm, such as PMN. A further improvement can be ob-
tained by merging the two steps into one. This way, we can perform the
threshold dynamically when each point is considered in the propagation.
The algorithm is then written

Algorithm 5 Mathematical morphology dilation by o variant of PMN

Input: an image I with object X in it. A ball By.
QOutput: an image D where D(p) =0ifp € X ® Bgand D(p) =d?>+1
otherwise

for all p € I do {Initialization}
if p € X then
D)+ 0
if peé(X) then
put (p, (0, 0)) in bucket(0)

3.5 Using the Euclidean DT to implement mathematical morphology 75

end if
else
D{p)«+d>+1
end if
end for

i+ 0
for i=0—d> do {Main loop}
N+ Npin(i) {taken from table 3.1}
for all (p,dp) in bucket(i) do
D{p)+0
propagated +— FALSE
for all » € {(0,1),(0,—-1),(1,0),(—1,0)} do
Dnew + distg (dp +n)
if Dpew < D(p+n) then
D(p+n) + Dpew
put (p +n,dp+ n) in bucket(Dye)
propagated +— TRUE
end if
end for
if propagated = FALSE then
for all ne N do
Dyew +— distg(dp + n)
if Dpew < D(p+n) then
D(p+n) + Dpew
put (p+n,dp+n) in bucket(Dypp)
end if
end for
end if
end for
end for

This implementation supposes that we know the size d of the ball By
that we use as structuring element. The algorithm can of course be
easily modified to allow the decision on the size d to be made during the
dilation. The algorithm is fully progressive in the sense that it generates
all dilations X @ By for every size 0 < d' < d, during the process of
creating X & By.

76

Chapter 3. EDT by propagation

3.5.4 Discussion

With a computational complexity proportional to the size of (X® B)\ X,
this algorithm performs as well as, but not significantly better than Vin-
cent’s [169]. Both algorithms out-perform any other method, either in
precision or in cost.

Both algorithms have additional capabilities that can make them more
interesting for a particular application: On one hand, Vincent’s algo-
rithm can also be used to perform dilations with structural elements of
arbitrary shape. On the other hand, this algorithm is limited to Eu-
clidean balls, but can be stopped at any distance d and provide X @ By.
For instance, it can easily perform dilations with elements By of increas-
ing size, until some criterion is met, as we do in the next chapter.

Chapter 4

Application: morphometry
of nerve cross-sections

In this chapter, we illustrote the use of the EDT by propagation algo-
rithm with o first medicol imaging application, the automatic morphom-
etry of nerve cross-sections. In this application, the EDT is used as a
criterion to sepoarate connected neurondl fibers and evaluate the myelin
sheath thickness around the azons. First we describe the nature of the
images to be treated and of the entities to detect. Then, we present the
Jull segmentation procedure. Finally, we present typical results and study
their validity.

4.1 Introduction

In this introduction, we briefly describe the anatomy of the nervous
system and the nature of the cells we intend to observe. Then, we present
a few usual approaches to nerve morphometry. Finally, we describe the
methodology used to acquire the images for this study.

4.1.1 Anatomy of the nervous system

The basic structural and functional unit of the nervous system is the
nerve cell or neuron, illustrated at figure 4.1.a * . All neurons have a cell
body which contains the usual cellular organelles common to all cells in
the body. Most nerve cells have processes called dendrites, which act like

! The illustrations found in this section are taken from [45]. This online anatomy
course has also largely ingpired the text of the section

78

Chapter 4. Morphometry of nerve sections

antennae, in that they receive input to the cell. Most neurons also have
a single long process called an axon, which is capable of transmitting a
pulse of electricity from the cell body to some distant target either in the
brain or the periphery. These axons may be quite long, up to a meter or
more for the axons connecting the spinal cord to the foot. Axons usually
break up into terminal branches near their target. These branches end
in swellings which make a specialized contact with the target cell. If the
target cell is another neuron, the swelling is called a bouton, and the
specialized contact a synapse. If the target is a muscle fiber, the bouton
is a motor endplate and the synapse is a neuro-muscular junction.

The nervous system also contains cells which are not neurons and which
do not directly participate in the task of sending and receiving electrical
signals. These supporting cells are called glia. We are particularly in-
terested in those that form myelin sheaths around axons in the central
and peripheral nervous systems.

Indeed, axons are generally not naked, as in figure 4.1.a. Rather, they
are wrapped into an insulating material called myelin. The presence of
a myelin sheath around an axon increases the velocity at which it con-
ducts a nerve impulse down its length. The myelin sheath (see figure
4.1.b) is formed by flattened out cells that wrap themselves jelly-roll
style around the axon. In the central nervous system the cells that form
the myelin sheath are called oligodendroglia; in the peripheral nervous
system they are simply called axon sheath cells. Figure 4.1.c is a highly
schematic drawing of a flattened axon sheath cell. To the right of it is a
cross-section of a myelinated axon, on which one can see how the axon
sheath cell wraps around the axon.

The sheath itself is essentially composed of flattened cell membrane,
with all of the cytoplasm squeezed out except in the outermost layer.
The major component of a cell membrane is the phospholipid bilayer.
With many layers of membrane stacked on top of one another, it has a
fatty appearance due to the presence of this phospholipid. Myelinated
axons therefore have a glistening white appearance in the central and
peripheral nervous systems, and are referred to as white matter. Areas
containing mainly cell bodies tend to lack myelin and are referred to as
gray matter. The terminology for both the central and the peripheral
nervous system is found at figure 4.1.d.

4.1 Introduction

79

Figure 4.1: The neurons. a. a neuron. b. a myelinated fiber. c.

a myelin sheath cell.
nervous systems.

d. terminology for the central and peripheral

80

Chapter 4. Morphometry of nerve sections

Figure 4.2: A nerve

A nerve is a bundle of axons traveling together in the periphery. If the
nerve containg sensory axons only, it is called a sensory nerve. If it con-
tains motor axons (going to muscles) only, it is called a motor nerve.
Most nerves in the body contain both sensory and motor axons and are
therefore called mixed nerves.

Most axons in any nerve are myelinated, which gives nerves their glis-
tening white appearance. In addition, there are some connective tissue
elements associated with nerves (see figure 4.2): individual axons are en-
veloped in a connective tissue wrapping called endoneurium. Bundles,
or fascicles, of axons are wrapped in a connective tissue covering called
perineurium. The nerve as a whole is enveloped in a connective tissue
sheath called the epineurium.

4.1.2 Nerve morphometry

Morphometric studies of nerves or fiber tracts involve information about
alterations in nerve bundle size, number or size of the axons. They have
been shown to be of great value in detecting developmental or patho-
logical abnormalities [70, 25, 116, 78, 40]. They have also been broadly
used in experimental nerve research [120, 18].

Most techniques used for estimating nerve and fiber parameters are
based on highly time consuming manual measures. For instance, in
the study below, the sciatic nerve contains approximately 15000 myeli-

4.1 Introduction

81

nated fibers, included in 85 images of 1850 x 1234 pixels, or 500 MBytes
of raw data. Therefore, the information is usually sampled by selecting
only a few of the images in the nerve cross-section. Unfortunately, the
large variability in fiber distribution according to function, i.e. sensitive
or motor nerves, or to the specie specificity, precludes the selection of a
sampling pattern that is reasonably representative of the nerve. Torch
[158] estimates that sampling schemes involving less than 50% of the
images provide an unreliable measure of myelinated fiber distribution.

Alternatively, an automatic image analysis tool solves the problem by
allowing to examine all the available material. Algorithms are usually
divided in two steps. First, the image is analyzed with a local operator
that classifies pixels between the various tissues types. For this stage,
Jain [79], Garbay [62] or Thiran [153] rely on thresholding, sometimes
preceded by filtering. Secondly, the image is analyzed at the structural
level using a variety of tools such as region growing segmentation [79],
grouping of edge elements [62], or mathematical morphology [153]. Un-
fortunately, none of these methods can handle multi-part objects such
as axons surrounded by the myelin sheath.

Alternatively, Amini [2], Fok [65] or Elmoatoz [43] rely on active con-
tour models, or snakes, to handle both local and structural analysis in
one step. After detecting candidates through a global tool such as the
Hough transform, each region of interest is processed individually with
an explicit active contour model evolving towards the real contours of
the cell. Unfortunately, such methods tend to be too computationally
expensive for the large data sets required by a full study. Also, it is un-
clear whether any of these models could handle the large size variability
encountered in nerve fibers.

4.1.3 Image acquisition
In order to visualize the myelinated fibers in the microscopic images of
the nerve cross-sections, one applies the following operations.

4.1.3.1 Animals and tissue preparation

The images used in this study were provided by Eduardo Romero, from
the Neural Rehabilitation Engineering Laboratory of the UCL. The sci-
atic nerves were obtained from one female cat (3250gr). The cat was

82

Chapter 4. Morphometry of nerve sections

anaesthetized with Sodium pentobarbital (30mg/kg I.M}, the abdomi-
nal aorta was canalized with a catheter 147, between the renal branches
and iliac bifurcation and perfused with a solution of phosphate-buffered
paraformaldehyde. The sciatic nerve was dissected from 2em distal from
the spinal cord to the popliteal fossa, after the tibial and peroneal bi-
furcation. A 3cm segment was excised where the sural branche was
coming out from the nerve (i.e. 4em proximal to the sciatic nerve bi-
furcation in a tibial and a peroneal branches). Nerves were stored in
Karnovsky fixative (2.0% paraformaldehyde and 2.5% glutaraldehyde in
0.1M Sodium cacodylate buffer solution) for 24 hours, postfixed in 1%
Osmium tetroxide during 4 hours and embedded in epon LaddL X — 112,
Semi-thin nerve cross sections (1ym) were cut on a Reichter Ultracut
microtome (Reichter, Wien, Austria) and stained with toluidine blue.

4.1.3.2 Photography

Photomicrographs were obtained using a color filter system in a Zeiss
microscope with an 40x PLANAPO oil immersion objective and a 10x
ocular. A total of 85 photographs represented about 98% of the entire
nerve. Images were then digitized by a system Nikon 25 — 1000 software
with a size of 1850 x 1234 pixels. Each photograph was enlarged by
the digitizing process (x3.3) to give a final magnification of x1695. A
microscale (0.01mm, Wild, Switzerland) was processed in the same way
for scaling. The pixel size was found to be 0.1135um.

4.2 Segmentation procedure

‘When a nerve section is correctly preserved, fixed and stained, it shows
the myelin appearing darker in the images (see figure 4.3). Therefore,
we can define nerve fibers in our images as objects where a clear region
is surrounded by a dark myelin sheath of constant thickness. Beyond
this bagic definition, let us review a few properties that can be used to
differentiate fibers from other structures.

Fibers have a round or ellipsoidal shape, but it is quite frequent to ob-
serve some kind of deformation [141, 129]. A shape parameter, such as
perimeter?/sur face, for the axon and myelin sheath - can be used as a
helpful criterion, but only in a loose fashion.

4.2 Segmentation procedure

83

BE

Figure 4.3: Part of a typical image in the nerve cross-section after tissue
preparation, staining and digitization

84

Chapter 4. Morphometry of nerve sections

¥

Figure 4.4: Typical irregularities in fibers. Left: size can vary from 2 to
20pm (diameters). Center: densely packed axons are connected. Right:
bad fixation and coloration leaves bright rings in the myelin sheath.

Rushton [137] established that the ratio d/D, between the diameter
of the axon and that of the whole fiber, is close to 0.6, a value that
optimizes the nerve impulse transmission in the myelinated axon.

Unfortunately, the fibers also present a number of highly variable fea-
tures that can hinder the efficiency of detection algorithms (see figure
4.4). For instance, for mixed nerves containing both sensitive and motor
axons, the diameter of the fibers can vary between lum (the light mi-
croscope resolution limit) and 20gm. Another difficulty comes from the
spatial distribution of the fibers: they can be either isolated or densely
packed together, which can makes their separation a crucial problem.
Finally, fixation and coloration problems can create bright spots within
the myelin sheaths, multiple rings, etc.

The method we propose is divided in five steps. First, pixels are classi-
fied into myelin (black) or non-myelin (white) pixels according to their
luminance. Secondly, the resulting binary image is filtered with con-
nected morphological operators, using rules derived from the above de-
scription. Axon candidates are identified in the equivalent zonal graph.
Thirdly, the thickness of the myelin sheath around each axon is eval-
uated, which discards inappropriate candidates and separates adjacent
fibers. Fourth, additional morphological criteria are used to detect and
discard false fibers. Finally, oblique cuts are detected and a geometrical
correction is performed when needed.

4.2 Segmentation procedure

86

4.2.1 Pixel classification

As pointed out by Trier [160], locally adaptive threshold methods are
more robust than global ones. In our case, this is particularly important
since tissue processing and dye preparation often lead to inhomogeneous
staining. This is observed as a smooth variation of the average lumi-
nance over the image. Thus, the threghold level for a pixel is chosen on
the basis of the histogram of a subimage around it, typically a square of
25 x 25um that contains a couple of axons. To maintain a low computa-
tional cost, the histogram analysis is only performed for a few locations
of the window, and the threshold levels are bi-linearly interpolated in
between.

The subimages contain three types of tissue: the myelin, the endoneurium
and the axons. This corresponds to 2 or 3 lobes in the histogram, de-
pending on whether the endoneurium presents any degree of coloration
differentiating it from the axons. We use a simple heuristic to select a
threshold level between the first two lobes. The 15%* and 50** percentile
in the histogram of the grey levels are considered typical values of the
first and second lobes. The mean of these two values is taken as the
threshold level.

4.2.2 Connected operators filtering

The resulting binary image presents a number of artifacts that are best
expressed and handled in terms of regions and their properties. This can
be formalized using connected morphological operators, as described by
Heijmans [72].

The binary image is considered as a partition P(X) of the set X of pix-
els into black and white regions. As illustrated in Figure 4.5, the zonal
graph of the image is the graph that takes the regions of P(X) as ver-
tices and whose arcs represent the adjacency of the regions. The graph
also specifies the color of the regions it represents. Given two partitions
P and P’ of the image, P is coarser than P’ if P C P. A morphologi-
cal operator ¢ is called connected if the resulting partition P(¢(X)) is
coarser than P(X), for any set X. In other words, connected zones are
either left untouched or changed altogether. In the common case where
connectivity is based on adjacency, connected operators can be described
and implemented by re-coloring and merging vertices in the zonal graph.

86

Chapter 4. Morphometry of nerve sections

Figure 4.5: The area operator flips zones with an area of less than 10
in the original image (left). It can be seen as a re-coloring (eenter) and
merging (right) of vertices in the zonal graph.

A well know connected morphological operator is the morphological
opening by reconstruction, where objects that are too small to con-
tain the structural element of the original erosion are deleted, while the
other objects are left unchanged. More complex criteria can be of course
defined, either considering each zone separately (it is then called a grain
operator) or considering the relationships between zones and their neigh-
bors. We use both hereafter.

Different connectivities yield different zonal graphs. In our case, we use
8-adjacency for foreground pixels and 4-adjacency for background pixels.
This defines a topology similar to the continuous case, and in particular
the zonal graph is then a tree, i.e. a graph without cycles. The following
connected operators are applied:

o Noise in the original image creates small mis-labeled areas in the
binary image. Those are removed by applying the area operator of
figure 4.5 for all areas smaller than the smallest axons (0.5um?).
Unfortunately, this operator is not stable. Applied iteratively it
can fail to converge and oscillate between two solutions. Thus, we
restrict its action to the leaves of the zonal tree, i.e. the regions
with only one neighbor.

o Fibers have a bright center surrounded by a black ring i.e. a black

4.2 Segmentation procedure

87

region with two neighboring white ones. Thus, all black leaves in
the zonal tree do not represent a useful feature and are removed.

e Fixation and coloration problems can separate the myelin sheath
in two parts (see figure 4.4). It appears as a white ring surrounded
by two black rings. These white rings should be re-colored in black.
White rings are detected because the gravity center of the zone is
located outside of it. Two cases are possible: either the ring is
open and it is a leaf of the zonal graph, it is then merged with
its only neighbor; either the ring is closed and has 2 neighbors in
the zonal graph, the three vertices of the graph are then merged
together.

After this filtering, axon candidates are identified as white leaves in the
zonal tree satisfying both a size criterion (lym < d < 12um) and a
shape criterion ensuring the compactness and approximate circularity
of the axon, depending on the perimeter?/area ratio.

4.2.3 Myelin sheath thickness evaluation

Unless fibers are very sparse, some of them are connected in the binary
image. In the zonal tree, this corresponds to several white leaves that
share the same neighboring black zone. This section deals with the di-
vision of this black zone into sub-regions that are either myelin sheaths
surrounding axon candidates or artifacts to be merged with the back-
ground.

For instance, let us consider the example of figure 4.6. The black zone
includes 9 white leaves, numbered 1 — 7,%,y. Leaves z and y were dis-
carded at the previous stage, because they lack circularity to be proper
axon candidates. Among the 7 axon candidates, areas 1 to 6 are true
axons while area 7 is an artifact.

Let us first consider a single white area. We evaluate the thickness of
the myelin sheath around it as follows: we define X; as the set of pixels
at a distance d of a set X of pixels

X¢= (X ® B \(X ® By) (4.1)

with By a ball of size d, & the morphological dilation and \ the set
difference. We define the thickness of the myelin sheath around a white

88

Chapter 4. Morphometry of nerve sections

Figure 4.6: Axon separation by distance transform. From left to right:
original image; result of the connected operators filtering; distance map
corresponding to the dilation process; detected fibers.

area X as the smallest distance d for which there are more white than
black pixels in Xj.

This is very efficiently implemented using the algorithm of section 3.5
for the morphological dilation. In particular, the set X is composed of
the pixels present within the buckets structure when bucket(d) is being
processed. Therefore, the termination criterion can be computed for
all values of d during the dilation, and the propagation process can be
stopped as soon as needed.

Let us now consider all the axon candidates that are leaves of the same
black area. We apply the previous procedure to each candidate, by order
of decreasing size. In figure 4.6, this separates fibers numbered from 1
to 5. For area number 6, the propagation process reaches pixels that
were previously considered as belonging to the myelin sheath around
area number 2. These pixels are re-labeled as belonging to the sheath
around the axon they are closer to. The resulting edge between the
two fibers corresponds either to the thickness of the smallest fiber, or to
the iso-distance line between the two axons. Area number 7 is entirely
included inside the myelin sheath surrounding area 1. Therefore, it must
be an artifact and it is discarded.

4.2.4 False positive detection

The above detection procedure can produce two kinds of errors: missed
detection when a fiber is not found and false positive when an image
feature is wrongly considered to be a fiber. False positive is considered
a worse problem because it is most likely to introduce bias in size dis-
tribution statistics, as most false positives are of a small size. Missed

4.2 Segmentation procedure

89

Figure 4.7: Obliquity parameters of a fiber

detection is only detrimental if its rate is size dependent, which does not
appear to be the case.

In order to minimize the number of false positives, we apply three ad-
ditional tests on the detected fibers. First, each individual fiber should
have a d/D ratio close to 0.6. Secondly, fibers should be mostly sur-
rounded by endoneurium, not by other fibers. This removes common
false positives located in the space between 3 neighboring axons. Fi-
nally, isolated features are discarded.

4.2.5 Correction of obliquity

Even in expert hands a perfect transversal cut is almost impossible, and
a certain degree of obliquity always remains. In that case, most fibers
appear as ovals instead of disks. Fiber orientation provides an estima-
tion of the obliquity. It can be evaluated by inspecting the principal axes
of the fibers (see figure 4.7). If the long axes are globally aligned, this
global alignment corresponds to the orientation of the cut. The ratio
between the average length of the long and short axis denotes the angle
of the cut.

Practically, we define the obliquity vector ¢; for the itk fibre as follows:

& = |uil e’ (4.2)
where 6; is the angle of the longest axis with the horizontal and |v| is

a’ F— a’ -
oi| = =% "% (4.3)
b

with o,; and oy the lengths of the long and short principal axis of fiber
%, respectively. The average obliquity over the N fibers of the image is

90

Chapter 4. Morphometry of nerve sections

Figure 4.8: Correction of obliquity. From left to right: a) Fibers found
on an oblique section; b) Principal axes of fibers ¢) Oblique-corrected
fibers

Umean = |Umean|ej9mem (4-4)
N

th:l'e |'Umgan |ej29mean — Z [|'U-j | ejgai (4.5)
i=1

with weighting factors w;. In practice, we use w; = oy, because larger
fibers provide a more reliable estimate of the obliquity. In order to cor-
rect the obliquity of the cut, all fibers are contracted along the direction
Binean DY a factor Iﬁm’ ag illustrated at figure 4.8.

4.3 Experimental results

The accuracy of the method is assessed in three different ways. First the
false positive and missed detection ratios are determined. Secondly the
fiber size distribution is compared to that found by a manual procedure.
Finally, the bias introduced by the automatic procedure is compared to
the bias due to an arbitrary sampling.

4.3.1 Detection ratios

First, we measure the false positive and missed detection rates on a set
of 30 images resulting in a total of more than 5000 fibers, i.e. on half of
the images for one fascicle of a nerve. Detected fibers are visually eval-
uated by super-imposing the edges of the detected fibers on the original

4.3 Experimental resulis

91

Figure 4.9: Detected fibers overlaid upon the image of figure 4.3

image, as illustrated in Figure 4.9.

For each image, false positives and missed fibers are manually counted.

Chapter 4. Morphometry of nerve sections

Image ID Number of Detected Missed False

fibers entities fibers positives
1 75 59 16 0
2 143 127 18 2
3 223 181 43 1
4 128 122 9 3
9 171 166 8 3
6 185 173 18 6
7 186 162 26 2
8 194 186 15 7
9 135 126 12 3
10 178 154 30 6
11 230 210 25 9
12 212 181 36 9
13 188 162 28 2
14 189 172 23 6
15 189 172 23 6
16 197 172 31 6
17 195 175 25 b
18 214 196 23 b
19 249 232 26 9
20 247 224 25 2
21 98 95 7 4
22 229 202 36 9
23 233 202 36 9
24 229 206 27 4
25 200 183 21 4
26 204 189 23 8
27 178 165 17 4
28 203 178 29 4
29 190 179 17 6
30 210 187 25 2
Total 5596 5035 691 130

Table 4.1: Detection results for the set of 30 images

4.3 Experimental resulis

93

The number of detected entities is determined by the program itself, and
the true number of fibers is computed by implementing the correction.
The results of this test are shown in Table 4.1. The average false positive
rate is 2.5% and the missed detection rate is 11%. This is acceptable
for a complete histological study, in which traditionally, information is
summarized as histograms of fiber size distribution.

4.3.2 Comparison with the manual procedure

For one nerve, 9 images were selected at different nerve locations. Using
standard software (NIH image for Macintosh), contour fibers were man-
ually drawn and measured. A total number of 1936 fibers were found
by the manual and 1899 by the automatic method. In figure 4.10, the
manual and automatic histograms are depicted (in = 0.5um) in the
upper left panel. The fit between both histograms Hy, Hy made of n
bins is evaluated with the x? test, i.e.

) (EL ()~ Hy(5)’
P AR A (9

This value and the number of bins used determine the goodness of the fit.
For the complete histogram, there is no significant difference (p > 0.05;
n = 26).

In order to get finer results, the histogram is split into its two lobes. The
first lobe shows a negligible difference confirmed by the x? test (p > 0.1;
n = 10). Interestingly, when the second lobe of the manual histogram is
left shifted by 0.5um, the fitting is highly improved (p > 0.5; n = 16).
This indicates a slight underestimation of the size of the large fibers by
the automatic method.

4.3.3 Comparison with an arbitrary sampling

The set of measures (9 images) is arbitrarily split into two sub-groups,
containing 960 and 976 fibers respectively. Figure 4.11 shows the fiber
distributions found for each sub-group with the manual and automatic
procedures.

The two peaks in the 4 histograms are at the same place (around 5um
and 11x) and their pattern is equivalently biphasic. However, histogram

94 Chapter 4. Morphometry of nerve sections

Complete histogram First lobe
150 T T T 150 T T T T
46,8 12.81
100 100
501 1 50 -
—— Automatic
—— Manual
0 : : : 0 : : : :
0 5 10 15 20 2 3 4 5 3] i
Second lobe Corrected second lobe
150 T T 150 T T T T
324 6.96
100 100
501 1 50
0 : : : : ob— : : :
8 10 12 14 8 10 12 14

Figure 4.10: Comparison of fiber size distribution found by the manual
and automatic procedures. x> values are placed on the upper right
corner for each histogram. The bin size is 0.5um.

4.3 Experimental resulis

95

Image set 1 Image set 2
100 T T T 100 T

Manual Procedura

100

BOL oo S L N=o3a

Automnatic Procedure

Mumber of cocuences in DSum bin

Fibie diameter (pm)

Figure 4.11: Comparison of fiber distributions for automatic (above)
and manual (below) measures for data sets 1 (left) and 2 (right) (bin =
0.5um)

96

Chapter 4. Morphometry of nerve sections

shape is different for the two groups and the x2 statistical test, per-
formed on manual normalized histograms, shows significant differences
for them (p <« 0.0001). In contrast, the automatic histograms corre-
spond very closely to their manual counterparts (p > 0.01 and p > 0.05).

This last test shows that, even if it does introduce some bias, the auto-
matic procedure is much less detrimental than the arbitrary choice of a
limited number of images in the nerve cross-section, a critical decision
in the manual morphometric study.

4.4 Discussion

In the above section, we show that the automatic procedure gives results
that are very similar to the manual procedure for a given set of images.
Because of the following considerations, we may even claim that the au-
tomatic procedure can be more accurate than the manual one, because
it is able to process the entirety of the available data set.

Manual procedures use a uniform sampling scheme in order to maintain
an equal representation of all locations within the nerve cross section.
Mayhew [105] or Fiola [50] consider 10% of the entire nerve surface as
the optimal area to examine. On the other hand, Torch [158] shows that
myelin fibers are not randomly distributed within nerves and concludes
that it would be necessary to perform measures on at least 50% of the
nerve bundle in order to keep an acceptable representation of the fiber
populations. This non-random distribution may also be increased by
pathological conditions where the fiber loss is either focal, as it has been
described for diphtheritic polyneuritis, amyloidosis, leprosy and primary
nerve tumors (Fisher [51], Rukaniva [136], Simpson [148] and Rudge
[135]) or multi-focal as in diabetic neuropathy (Thomas [154]).

The computational cost of the method is a critical parameter due to
the considerable amount of data to be processed to study a complete
cross-section of a nerve. Most of the processing is performed on the
zonal graph, not on the image itself. Because this graph is orders of
magnitude smaller than the image, the cost of the connected operators
filtering is negligible. The main computational costs lie in the thresh-
olding step, in the generation of the zonal graph and in the evaluation of
the myelin sheath’s thickness. Globally, the method requires less than

4.4 Discussion

97

one minute on a Pentium IT, 233MHz computer to process a 1850 x 1234
pixels image. This means between one and two hours to process a com-
plete cross-section.

Tn conclusion, the above procedure is a fast and accurate method for the
morphometry of nerve cross-section.

98

Chapter 4. Morphometry of nerve sections

Chapter 5

Signed Euclidean DT with
error detection and
correction.

In this chapter, we consider signed distonce transformotions. We show
that the approzimote signed distance maps contoins sufficient informa-
tion to allow the detection and correction of errors, notwithstonding the
method used to produce them.

First, we consider a few properties of the Voronoi diagram of a discrete
set of points, both on a continuous plane or on a discrete grid. Errors
in signed EDT olways occur near the corners of the Voronoi polygons,
which can easily be detected and corrected. The algorithm’s computa-
tional complexity is evaluoted.

This time, the error detection paradigm can be extended to 3 dimensions.
We evaluate the difficulty of a 3D exact EDT by error correction and
compare a few alternotives.

5.1 Signed EDT and Voronoi diagrams

As defined in chapter 2, the signed distance from an object and the
Voronoi diagram of the object pixels are equivalent concepts. In partic-
ular, we have

Vpel, pe VP(p— 8D(p) (5.1)

100 Chapter 5. Signed EDT with error detection and correction.

In order to understand the behaviour of Signed EDT algorithms, it is
interesting to consider a few properties of the Voronoi diagram, both
on the continuous plane and on a discrete grid. Let us start with the
continuous case.

A first property of the continuous Voronoi diagram is that its tiles are
connected sets. An even stricter property says that any tile VP{q) in
the Voronoi diagram is star-shaped, i.e.

peEVP()=>VO0<a<l,p=ap+(1—-a)geVP(g (52)

This is proved ab absurdo. Consider that there is a ' € VP(g). Then,
there exists ¢ € O such that

diste(p,) < diste(t, q) (5.3)

Let us then consider the distance between our point p and this object
pixel ¢’. By the triangular inequality, we have

dist.(p,q") < dist,(p,p") +dist.(v',) (5.4)
by combining (5.3) and (5.4), we have

diste(p, ¢') < diste(p,p") +dist. (¢, q) = dist.(p,q) (5.5)

with the equality a consequence of the alignment of p,7 and ¢. Obvi-
ously, with dist.(p,q¢’) < dist.(p,q), p cannot be part of V P(g), which
contradicts our assumptions. QED.

While Voronoi diagrams based on any metric that satisfies the triangular
inequality are star-shaped, continuous Voronoi diagrams based on the
Euclidean metric have an even stronger property: they are convex, i.e.

L, EVP()=>V0<a<l, p =ap +(1—a)ps €VP(g) (5.6)

Once again this can be proved ab absurdo. Let us consider that there
is ap & VP(g), ie that o € VP(¢') with ¢ # ¢. The plane is divided
in two by the mid-perpendicular of ¢¢’, and each half-plane corresponds
to the zones of influence of ¢ and ¢’. P’ & VP(qg) implies that this
mid-perpendicular intersects p'g between 7' and ¢. On the other hand,

5.1 Signed EDT and Voronoi diagrams 101

Figure 5.1: Corners of a Voronoi Polygon.

p1 € VP(g) and pa € VP(q) imply that it intersects p'g beyond p1pa.
Both propositions contradict each other. QED.

A last property says that the tiles of the Voronoi diagram of a discrete
set of point are polygons, because it is constructed from the lines that
divide the plane between the pixels two by two. This is why we usually
refer to the tiles of the Voronoi diagram as Voronoi Polygons (VP).

Let us now consider what happens for a digital image, i.e. for the Voronoi
diagrams defined on discrete grids. In the exact digital Voronoi diagram,
the value of each pixel is strictly equal to its value in the underlying con-
tinuous plane. Unfortunately, the tiles in such a diagram are not always
connected anymore, as illustrated in chapter 2, section 2.2.2. This leads
to errors in the computation of the signed DT with limited size neigh-
borhoods.

Interestingly, errors only occur in the corners of the Voronoi polygons,
where the corners of a polygon are defined as the locus of the segments
smaller than /2 that join two edges of the polygon. As illustrated at
figure 5.1, errors in the signed DT only occur when the VP is discon-
nected on the digital grid, i.e. when the VP can fit between points of
the grid. And the maximum length between two neighboring points of
the grid is v/2.

To every corner of the continuous Voronoi diagram corresponds a corner
of its digital approximation generated by an approximate signed EDT
algorithm. Those corner pixels share the following property. Corner
pixels and their two direct neighbors in the propagation direction have
3 different nearest object pixels. This property can easily be checked

102

Chapter 5. Signed EDT with error detection and correction.

Figure 5.2: Neighbors to consider during error correction.
and provides a fast method to detect corners.

5.2 Error correction

Once we know where the corners of the digital Voronoi diagram are,
we can correct all errors done by the approximate signed Euclidean DT
algorithm by checking if the real corner of the VP contains any pixel.

In figure 5.2, p; is a corner pixel, neighbored by ps = p, + (0,1) and
ps = p1 +(1,0). The nearest object pixels of p1, pa and p3 are ¢1, ¢a
and g3, respectively. The signed distances are SD(p1) = (dpg1,dpy1),
SD(p2) = (dps2,dpy2) and SD(p3) = (dpe3, dpysz). With that knowl
edge, we can actually compute the limits of the corner of the continu-
ous Voronoi diagram analytically, since lines L5 and L3 are the mid-
perpendicular of ¢, g5 and ¢, g3 respectively.

Using pixel p; as the center of our coordinate system, we have

%19.70, + ﬂ]_g (57)
o131 + 13 (5.8)

Lig : ny <
Liz : ny >

L5 is the mid-perpendicular of ¢ g2, so that

dpg2 — dpe1
_ 5.9
12 dpyl — dpr +]_ ()

1
Pra = 5-(can-(dps1 +dpea) — dpyr — dpya + 1) (5.10)

5.3 CSED Algorithm 103

and L3 is the mid-perpendicular of ¢g3, so that

dpe3 — dpge1 — 1
= 5.11
13 dpy1 — dpy3 (:
1
s = E.(al;;.(dpxl + dpy3—1) — dpy1 — dpys) (5.12)

Finally, we are interested in the location of the true corner of the Voronoi
diagram, i.e. the intersection of L1y and Li3. The true corner, (c;,cy),
gives us the maximum values of (ng,n,) to consider. In particular, for
135, there is no need to go further than

P12 — B3
013 — 12
Equations (5.9), (5.11) and (5.13) require some more attention. In (5.9),
a singularity could occur if dp,; = dpys — 1. Fortunately this never
happens with ¢ # g2. In (5.11), there is a singularity if dp,; = dpys3.
‘When this happens, it means that 13 is a vertical ling, for which a3 =
oo is an appropriate slope. Finally, in (5.13), a singularity occurs when
13 = c19. This means that L9 and L3 are parallels, which only occurs
for a3 = a3 = 1. In that case, the pixels in the diagonal direction
should be tested until the first one that does not change value.

(5.13)

fgmax = G =

5.3 CSED Algorithm

Using the above considerations, we can design the following algorithm.
First, we apply any approximate signed Euclidean DT algorithm. For
instance, let us consider a signed version of Danielsson’s raster scanning
algorithm [37].

Algorithm 6 4-neighbors Sequential Signed Fuclidean Distance trans-
formation (4SSED).

Input: an M x N image I containing an object O.
Output: the signed distance transformation SD(p) = p—g where g € O
and dist.(p,q) < diste(p,¢)V ¢ € O.

for all pe I do {initialization}
if pc O then
SD(p) + (0,0)

104

Chapter 5. Signed EDT with error detection and correction.

else
SD(p) + (o0, 0)
end if
end for

for p, =0— N —1 do {forward scan}
for p,=0>M -1 do
teSt(p: (_1: 0))
teSt(p: (0: _1))
end for
for p,=M —-1-0 do
test(p, (1,0))
end for
end for
for py =N —1—0 do {backward scan}
for p,=M —-1-0 do

test(p, (1,0))
test(p, (0,1))

end for
for p,=0>M -1 do
teSt(p: (_1: 0))
end for
end for

procedure test(p,n)
if p+nel then
if d‘EStE(SD(p-l-n) —n) < d‘EStE(SD(p)) then
SD(p) =+ SDp+n)—n
end if
end if
end procedure

As before, a special attention should be taken to the efficient compu-
tation of distg(dp), either using Leymarie’s formulae (2.18) or lookup
tables to compute the squares of integers.

In the second step, we apply the corner detection and error correction
using the principles of the previous sections, with a slight modification.
Indeed, for corner pixels with distg(SD(p)) < 116, we know from chap-
ter 3 that a 3 x 3 neighborhood is always sufficient to ensure a correct

5.3 CSED Algorithm

distance transformation. It is then more computationally efficient to
only test the diagonal pixels rather than to make the complex floating
point operations of equations (5.9) to (5.13). The algorithm goes as
follows.

Algorithm 7 Corner detection and error correction in o signed Fu-
clidean DT.

Input: An approximate signed Euclidean distance map SD.
Output: An exact signed Euclidean distance map SD.

for all pe I do {corner detection}
1 4= (5gn(5D(p)s), 0)
if SD(p+n1)— SD(p) # ni then
n < (0, sgn(SD(p)y)
if SD(p+ns) — SD(p) # ns then
if SD(p+na) — SD(p+n1) #ny—ny then
correct(p,n1,n2)
end if
end if
end if
end for

procedure correct(p,n1,n9) {error correction}
if dist,(p) <116 then
test2diagonal(p,n1,m2)
else
compute a12, 013, 12, 413, e max
if Q19 = ¥13 then
testdiagonal (p,n1,m9)
else
for ny =0 = Ny max do
for Ty = 043.1y + B13 = oqang + fis do
testwrite(p, n)
end for
end for
end if
end if
end procedure

106 Chapter 5. Signed EDT with error detection and correction.

procedure testdiagonal(p,n1,m2)
140
repeat
testwrite(p, i.(n1 + na))
14—1+1
until testwrite(p,i.(n1 + na)) did not modify SD
end procedure

procedure testwrite(p,n)
if p+nel then
if diste(SD(p) +n) < distg(SD(p +n)) then
SD({p+mn) > SD(p) —n
end if
end if
end procedure

One can notice that, in contrast with the 4SSED algorithm, the correc-
tion step uses a “write” formalism in the test() procedure. With the
“read” formalism, test(p,n) can modify the value of SD(p). With the
“write” formalism, it can modify the value of SD(p + n).

5.4 Computational Complexity

In order to evaluate the computational cost and complexity of this new
algorithm, we apply the same tests as in chapter 3, i.e. the test images
of figure 3.7. The result of these experiments is found in figures 5.3 t0 5.5.

In this section, we compare five different algorithms. Three of those
are PSN, PMN and PMON, the propagation algorithms of chapter 3.
The other two are the approximate and exact algorithms of this chapter.
The approximate one is called 4-neighbors Sequential Signed Euclidean

Distance transformation, or 4SSED. The exact one is a correction on
45SED, and we call it 4SSED+.

In all three tests, 4SSED performs marginally better than the other ap-
proximate algorithm, PSN. There is no difference between them for test
1, the empty disk image. For tests 2 and 3, 4SSED does not suffer from
the slight orientation dependence that affects PSN.

The exact 4SSED+ algorithm is faster than the exact PMN and PMON

5.4 Computational Complexity 107

x 10
25 T T T T T T

CPU time per pixel (sec)

— P8N -
—+— PMN
—&— PMON
—&— 488ED
—— 488ED+

I I
1600 1800 2000

o i . i i i i
200 400 BOD 500 1000 1200 1400
image size {nxn)

Figure 5.3: Test1: Empty circle image.

CPU time (sec)

4
10 20 30 40 a0 ED 70 &0 30
image crientation

Figure 5.4: Test2: Random squares .

108

Chapter 5. Signed EDT with error detection and correction.

T
—— P8N
—— PMN
—&— PMON
—8— 488ED

28

2.6

s by
i IS

CPU time (sec)
ra

4] 10 20 30 40 a0 ED 7o &80 a0
image crientation

Figure 5.5: Test3: Straight line.

algorithms in all cases. Actually, for tests 2 and 3, it is even as fast as
the approximate PSN. Also, 4SSED+ is nearly unaffected by the image
orientation. Indeed, during the “corner detection and error correction”
step, most of the processing power is spent on the constant time corner
detection. Corners typically represent less than 2% of the image pixels,
which keeps the correction cost low.

To conclude, 4SSED-- is both faster and less orientation dependent than
its propagation counterparts. In average, it is only 15 to 20% slower than
45SED. This makes it arguably the optimal exact signed Euclidean DT
algorithm.

Chapter 6

Euclidean DT in 3
dimensions

In this chapter, we explore how the algorithms of chapters 3 and § can be
extended to 3 dimensions. First, we remind the algorithms that can be
used to produce epprozimete Fuclidean DT in 3 dimensions. Secondly,
we consider the error detection and correction methods of chapter 3 and
5 and discuss the possibility of extending them to 3 dimensions. Thirdly,
we evaluate the computational complexity of algorithms that would use
this approach, and show that it can not compete with Saito’s method.
Alternatively, we propose a new hybrid method thot combines our optimal
2D distance transformation algorithms with Saito’s along the third axis.
We show that this is the best available algorithm for large dote sets,
especiolly when one considers onisotropic volumes.

6.1 Extending the approximate EDT to 3D

In order to produce approximate 3D Euclidean DT, Danielsson [37] and
Leymarie [95] propose a complex 6 scans algorithm. It includes a for-
ward and a backward scan over the whole image, plus opposite scans at
the plane and line level. In total, it requires 12 comparisons per pixel
with direct neighbors and 36 for the 3 x 3 x 3 neighborhood.

In [128], Ragnelmam proposes two algorithms with independent raster
scans. The corner EDT can be extended to any dimension. Tt uses 27
scans involving D direct neighbors in D dimensions. In 3D, it requires
to perform 24 comparisons per pixel. Alternatively, he proposes a 4 scan

110 Chapter 8. Euclidean DT in 3 dimensions

d=0 d»0

1
.

_ %gg

5 o

Figure 6.1: Neighborhood used for the 3D ordered propagation algo-
rithm. Left: D(p) = 0 Right: D(p) > 1 for one eighth of the directions
space.

m-

algorithm with the neighborhoods of figure 2.8. Tt requires 48 compar-
isons per pixel.

Finally, it is possible to extend the PSN algorithm of chapter 3 to 3
dimensions. The only modification required is that 3D neighborhoods
should be used. Instead of those of figure 3.1, we use those of figure 6.1.
For object pixels, the complete 3 x 3 neighborhood is checked . For
other pixels, only direct neighbors n such that in the same direction as
dp are considered. This algorithm requires approximately 3 comparisons
per pixel.

6.2 Possible error detection and correction meth-
ods in 3D

The error detection and correction methods of chapters 3 and 5 are
summarized as in table 6.1. Actually, other algorithms combining the
methods of both chapters could also be designed. One could detect
corners of the Voronoi polygons in a signed EDT, and then use neigh-
borhoods from table 3.1 to propagate them further. Alternatively, one
could detect non propagating pixels in a signed version of PSN, and then

TActually, to avoid unnecessary computations, it is only used for pixel p in the
border of the object O, ie. such that p € O and 3¢ = p +n € O with a direct
neighbor n

6.2 Possible error detection and correction methods in 3D

111

Chapter 3 Chapter 5

Detection | non-propagating pixels | Corners of the digital
in the PSN algorithm | Voronoi Polygons.
Correction | use of neighborhoods | explicit computation
of increasing sizes of the true VP corner

Table 6.1: The error detection and correction phases of the algorithms
of chapter 3 and 5.

Figure 6.22 Why PMN’s detection criterion does not work in 3D:
p(0,0,0) is closer to ¢(4,4,8) than to s1(8,0,6), $2(0,8,6) and
83(0,0,10). Still, pixels r1(3,3,7) and r2(3,3,8) € VP{¢g)\ N(p) prop-
agate.

compute the corner of the continuous VP.

Unfortunately, not all of these methods can be extended to 3 dimensions.
For instance, there can be errors in the 3D EDT while none of the neigh-
boring voxels fails to propagate, as illustrated at figure 6.2 where there
is an error in p while both r; and r2 propagate. Hence, the detection
method of chapter 3 cannot be used.

Similarly, computing the exact corner of the continuous VP from the 3
direct neighbors in the propagation direction does not necessary provide
a finite volume. Tt makes the error correction method of chapter 5 im-
practical.

112

Chaptier 6. Euclidean DT in 3 dimensions

Neighborhood Smallest error Non-propagating pixel
(dps,dpy,dp,) diste | (dps,dpy,dp.) diste
3x3x3 (6,3,2) 49 (4,2,2) 24
5§x86x5 (12,4,3) 169 (9,2,3) 94
TXTxT (24,5,5) 626 (20,4,4) 432
9x9x9 (24,9,4) 673 (19,7,3) 419
11x11x11 (37,11,5) 1515 (31,9,4) 1058
13 x 13 x 13 (45,12,5) 2194 (38,10,4) 1560
15 x 156 x 15 (52,12,5) 2873 (44,10,4) 2062
17 x 17 x 17 (60,12,5) 3769 (51,10,4) 2717

Table 6.2: Errors closest to (0,0,0) for a number of N x N x N neigh-
borhoods.

On the other hand, the corner detection of chapter 5 and the multi-
ple neighborhoods correction of chapter 3 can be extended to 3D. For
corner detection, one should be aware that there are two types of cor-
ners. Either the three neighbors in the propagation direction belong
to different tiles of the Voronoi diagram than the current voxel. We
call this a 3-corner. Either only two neighbors out of three belong to
different tiles. We call this a 2-corner. As illustrated at figure 6.2, con-
sidering 2-corner guch as 9 is a needed to detect errors such as that in p.

Similarly to chapter 3, one can compute the limits for which a neigh-
borhood of a given size guarantees that no error occurs in the Euclidean
DT. These limits are found in table 6.2. The middle column gives the
error for which the distance is the smallest. The right column contains
the voxel closest to the error and that belongs to the same tile of the
Voronoi diagram.

6.3 Limitations to the 3D error detection and
correction methods

Unfortunately, although it is theoretically possible, the generation of an
exact Euclidean DT in 3D using VP corner detection and multiple neigh-
borhoods correction suffers from two major drawbacks. On one hand,
corners are not as uncommon in 3D as in 2D. For instance, for the sphere

6.3 Limitations to the 3D error detection and correction methods 113

test images used in the next section, there are typically only 1 or 2% of
3-corners, but sometimes as many as 20% of 2-corners. This makes the
correction phase a non-negligible part of the computational cost. On the
other hand, the use of large 3D neighborhoods guarantees exact EDT
up to much smaller values than in 2D. For instance, the 17 x 17 x 17
neighborhood only guarantees an exact EDT up to distg = 3769, while
the 2D 17 x 17 was sufficient up to distg = 57128.

Because of these drawbacks, we first assess the feasibility of the 3D error
detection and correction approach by studying the computational com-
plexity of a prototype algorithm, that computes an approximate EDT
using the full error detection, and an error detection limited to 3 x 3 x 3
neighborhoods.

We compare the computational costs and complexities of 5 algorithms.
These algorithms are

e Ragnelmam’s corner EDT, that uses 8 scans with 3 direct neigh-
bors each.

e The 3D version of the PSN algorithm, with the neighborhoods of
figure 6.1.

e The same algorithm used to produce a signed DT, as required by
the error detection method. We call it signed-PSN

e (Our prototype algorithm, where 3-corners are further checked with
the 3 x 3 x 3 neighborhood and 2-corners are further checked with
a 3 x 3 neighborhood in the corner plane. We call this 3 x 3 x 3
PMN.

e Saito’s exact Euclidean DT algorithm.

In order to compare these algorithms, we use two classes of test images.
In test 1, non-object pixels are included in one eighth of a sphere cen-
tered in (0,0,0), with a radius equal to the image size. This image size
varies from 32 x 32 x 32 to 256 x 256 x 256. In test 2, the object congists
of a plane whose orientation varies from 0 to 90°. The image size is
200 x 200 x 200. The algorithms were implemented in C and executed
on a SUN Sparc Ultra 1 workstation.

114

Chaptier 6. Euclidean DT in 3 dimensions

CPU time per voxel (sec)

: ; ; ; — FSN
L R e et PMN 32323 |-
: : : : —&— SBaito
—2— PS8N signed
—&— comer EDT

i i i i
4] a0 100 150 200 250 300
image size {MNxMxN)

Figure 6.3: Testl: Empty sphere image.

Figure 6.3 shows the computational cost per pixel for test 1. PSN is the
fastest in all cases but for very small images. Tts cost is only marginally
affected by the image size. The corner EDT, which gives a similar ap-
proximation of the EDT, is the slowest in all cases. This illustrates the
weakness of raster scanning methods in higher dimensions.

The signed PSN has a computational cost significantly higher than the
unsigned one. It also has much larger memory requirements. The hy-
brid 3 x 3 x 3 PMN requires an approximately constant additional cost
compared to the signed PSN. It corresponds mostly to the cost of the de-
tection phase since corrections are strictly restricted within the 3 x3 x3
neighborhood.

Finally, Saito’s algorithm appears to be quite efficient in 3D. For images
smaller than 50 x 50 x 50, it is the fastest algorithm of all. For images
smaller than 150 x 150 x 150, only the unsigned PSN is faster. Even for
images as large as 256 x 256 x 256, its computational cost is similar to
the 3 x 3 x 3 PMN, only twice slower than PSN.

6.3 Limitations to the 3D error detection and correction methods 115

45 ! ! ! ! ! ! ! !

(4]
=]

a
[+

CPU time {sec)
ra
(=]

........ RRERTThos CEELE LT FERIETPTEEY SEPPREEEE SRR puy-v-ry

: : : : D = PMN - 3 _
—&— Saito : n
—&— PSN signed . -
—&— cormer EOT .

I I I I I I I I
4] 10 20 30 40 a0 BD 70 80 a0
Orientation (=)

Figure 6.4: Test2: Oriented plane.

On the other hand, its complexity appears to be higher than that of the
approximate algorithms. Actually, one can show that Saito’s algorithm
has a O(n?) complexity for n x n x n images. More generally, it has a
O(D.nP*+1) complexity in D dimensions, for an n X ... X n image. In-
deed, in Saito’s algorithm, the scans in each direction are independent.
In one direction, scanning one line of n voxels has a O(n?) complexity,
and there are n”~! such lines, so that the computational cost of a full
scan in one direction is O(n?+1).

The results of test 2 are found in figure 6.4. The approximate algorithms
are ordered in the same way as for test 1. The PSN-based algorithms
are somewhat orientation dependent, in contrast with the slower corner
EDT. Saito’s algorithm performs better than all others in most orienta-
tions, but worse for orientations close to 60°.

116 Chapter 8. Euclidean DT in 3 dimensions

6.4 Hybrid algorithm, combining 4SSED- and
Saito’s methods

For small images, Saito’s algorithm is extremely efficient, even out-
performing approximate EDT algorithms in many cases. For numerous
applications, 3D images indeed have small dimensions, because large di-
mensions would lead to enormous datasets, that would be impractical to
acquire, store and process. A typical PET scan only has a 128 x 128 x §
resolution. A typical MR image would be 256 x 256 x S, where § is the
number of slices (typically 100).

For larger images, Saito’s method suffers from a O(r?) complexity, but
it appears that the error detection and correction methods can not pro-
vide better results. This makes the Euclidean DT an expensive tool to
process CT scans, for instance, where the resolution can easily reach
512x 512 x §. Also, one may expect that the regolution of other modali-
ties, such as MRI, will increase in the future. Already today, non medical
applications such as remote sensing or 3D microscopy provide datasets
where the size of each slice is much larger, even though the number of
slices may be smaller.

Fortunately, it is possible to improve Saito’s 3D EDT by noticing that it
works axis by axis. In particular, it means that a 2D EDT is computed
in each slice before the algorithm considers the 3rd (inter-slice) axis.
Therefore, it is possible to replace the computations along the two first
axis by our optimal 2D EDT of chapter 5 applied on all slices. We call
this the hybrid algorithm.

The gains in computational cost of this change are illustrated at fig-
ure 6.5. Saito’s and the hybrid algorithm are compared using the test
1 image, i.e. a 3D image containing the 8% of a sphere, with a size
N x N x N, with N varying from 100 to 600. PSN is also shown as a
reference.

Both for Saito’s and the hybrid algorithm, the cost of the slice by slice
2D EDT stage is shown as a dashed line. The additional cost for the
computations along the 37 (inter-slice) axis - the distance between the
dashed and plain lines - is of course identical in both cases. Surpris-
ingly, this additional cost is only very lightly dependent on the image

6.4 Hybrid algorithm, combining 4SSED+ and Saito’s methods 117

5

x10
3.5 T T T T T T T T
—=— PSN approximation : :
- #&-- Saito in 2 dimensions
—&— Saito in 3 dimensions
3| - —-- 488ED+ in 2 dimensions -
—— Hybrid with 488ED+, then Saito in 3rd dimension

CPU time per voxel (sec)

0 1 1
100 150 200 250 300 350 400
Image size

450

300

250

EOD

Figure 6.5: Computational complexity of Saito’s and the hybrid algo-

rithm on 3D isotropic data.

118

Chaptier 6. Euclidean DT in 3 dimensions

x107®
i ! ! ! ! ! ! ! !
— — PSN approximation : : : :
—B— Saito with 1st axis anisotropic : : : : I
gL .| —=— Saito with 2nd axis anisotropic I S S SRR S |
—&— Saito with 3rd axis anisotropic : : : :
—— Hybrid with 488ED+, then Saito
1 SO S U S P SRS SO UUPURS PPN AU SO SR _

- :

8 :

24_.........I..........J..........I..........J..........J.. eJ..........J: —

5 ;

T :

o

v :

ES_ et A S S - s foeoeaes |

=] '

o :

] :
Bl e T e T e .
1 ..F___‘___._.-.o..—e..—..—..T.._,;._.'.f.T.._.,'T.—.—.._..._: |
A :

o i i i i i i i i
oo 200 300 400 a00 EOD Foo 8O0 300 iooo

Image size

Figure 6.6: Computational complexity of Saito’s and the hybrid algo-
rithm on 3D anisotropic data (voxel sizeis 1 x 1 x 4

size, 50 that the hybrid method nearly has a O(n3) complexity. Practi-
cally?, the hybrid algorithm is faster than Saito’s for images larger than
260 x 260 x 260.

When on considers practical applications, it appears that 3D images are
very seldom cubic as considered until now. Instead, they are usually
made of a relatively small number of high-resolution slices with a lower
inter-slice resolution. We are therefore interested in how the above re-
sults adapt to anisotropic data.

Figure 6.6 considers the same cubic volume as before (the 8¢* of a sphere)
sampled with 1 x 1 x 4 voxels. Therefore, there are 4 times less slices
than pixels along a column or a row of a slice. For instance, an image

>This limit is of course dependent on the content of the image. In particular, it
would be possible to find pathological images - such as lines oriented at 60° in all
slices - where the limit is much lower. For other images - such as a single object pixel
in the middle - Saito’s algorithm is always the fastest. Nevertheless, the “sphere”
image gives us a good indication of where the limit will be in most practical cases.

6.4 Hybrid algorithm, combining 4SSED+ and Saito’s methods 119

size of 600 means a 600 x 600 x 150 image. In such a case, the complexity
of Saito’s algorithm depends on the order in which the axis are consid-
ered, i.e. whether the smaller anisotropic axis is considered first, second
or third. Obviously, considering it in second place is the best choice.
On the other hand, the hybrid method appears to be nearly insensitive
to the image size, which makes it asymptotically optimal. Practically,
the hybrid method is once again the fastest as soon as the image size
exceeds 260. Let us remind that this corresponds to a volume of data
that is 4 times smaller than at figure 6.5.

Finally, let us notice that the hybrid algorithm is not significantly slower
than PSN3, the fastest and coarsest approximate EDT. This is especially
true for anisotropic data.

8 At figure 6.6, PSN’s computational cost increases for images sizes over 700. This
contradicts the theory that says that PSN has a fixed cost per pixel. We postulate
this experimental increase is linked to the size of the dynamic data structure that
holds the pixels in the propagation front. For samall images, the buckets” structure is
small enough to hold entirely within the cache memory. For large images, it has to
be stored in the main RAM, which slows down the whole process.

120 Chapter 8. Euclidean DT in 3 dimensions

Chapter 7

Application: registration of
MR images

This chapter illustrates the use of the 3D Euclidean distance transfor-
mation in two registration applications. First, we introduce the need
Jor data fusion and registration in medical imaging, and briefly review
the main approaches to the problem. Then, in the first application, we
show how to find the best rigid-transformation from en MR image to
the physical space. In the second application, a computerized brain ai-
las is warped into o patient’s MRT using a perameterized second degree
transformation.

7.1 Introduction

In medical imaging, it is often needed to use several complementary
sources of information, such as scans taken at different times, scans
from different modalities, template anatomies, ... Registration is the
process of finding the proper spatial relation of a data-set in reference
to another. It makes it possible to super-impose the information from
the different sources and enables their combined interpretation.

7.1.1 Applications

Data fusion and registration are such important and widely used tools
in medical imaging that it is not possible here to make an exhaustive
review of their applications. Thus, we only present a few illustrative
ones.

122 Chapter 7. Registration of MR images

Registering time-series data from the same patient, in one or more
modalities, allows to evaluate the progress of a disease. For instance,
Ettinger [48] applies it to the follow-up of multiple-sclerosis patients.
‘Wong [183] uses it in epilepsy diagnosis.

Registering images from the same patient in different modalities al-
low their simultaneous interpretation. For instance, Kapouleas [88] or
Mangin [101] register functional Positron Emission Tomography (PET)
with Magnetic Resonance (MR) images where the soft tissues’ anatomy
can be seen.

Registering medical images to the physical world permits their use in
image-guided surgery. For instance, Davey [38] uses it for neuro-surgery
planning; Herring [75] for image-guided surgery of the spine; Wasser-
man [178] for radio-therapy treatment planning.

Finally, registering images to a template anatomy can be useful for com-
parison purposes, to provide anatomical a priori to automatic segmenta-
tion procedures, ... For instance, Talairach [151] proposed a standard
coordinate system for the brain. Kikinis [46] developed a digital brain
atlas used - among others - by Warfield [176] in model-driven segmen-
tation.

7.1.2 State of the Art

The variety of published registration methods can be presented in many
different ways. Possible classification criteria include the type of trans-
formation (rigid, affine, polynomial, fluid, ...) or the type of matching
criterion (visual, point-based, surface-based, volume-based, ...). Here,
we present them according to the type of interaction they require from
the user.

7.1.2.1 Methods using fiducial markers

When extreme precision is required, such as in the case of image-based
surgery, the registration can be based on external fiducial markers, vis-
ible in both imaging modalities, implanted on the patient. Mandava
[100] and Maurer [102, 103] present such methods where the exact loca-
tion of the markers is precisely extracted from both scans, and the best

7.1 Introduction 123

transformation is the one that minimizes the misfit between the pairs
of corresponding markers. The precision achievable by this approach is
evaluated by Fitzpatrick [52].

Unfortunately, the use of markers is both time-consuming in the image
acquisition phase and sometimes painful for the patient, which restricts
its use to some specific applications, such as stereotactic surgery.

7.1.2.2 Manual retrospective methods

Retrospective methods do not require external markers, but use the
anatomy itself to search for the best transformation.

The simplest methods rely on the user to manually define the param-
eters of the registration transformation. For instance, Kapouleas [88]
registers MRI and PET scans of the brain by first identifying the inter-
hemispheric plane, then interactively adjusting the remaining two trans-
lational and one rotational parameters of the rigid transform, while the
operator visualizes the edges of the MRI overlaid on the PET data. A
similar approach is used by Bohm [8] to iteratively select the parameters
of a second degree polynomial transform that registers a computerized
brain atlas to PET or MRI.

Alternatively, point-based methods require the user to select correspond-
ing points in both images, and automatically compute the best trans-
formation based on those pairs of corresponding points. Pietrzyk [121]
proposes an iterative method based on the repeated selection of one or
two such pairs. Hill [76] and Henri [74] select a set of 4 to 26 cor-
regponding points, and compute the transformation that minimizes the
global misfit on these.

Manual methods are of course time-consuming and their accuracy is
limited to the precision with which the operator can designate matching
features.

7.1.2.3 Automatic retrospective methods

Manual (human-based) methods rely on a small set of highly semantic
information such as the exact location of specific anatomical features
in both images. Automatic (computer-based) methods compensate the

124 Chapter 7. Registration of MR images

lesser semantic ability of computers by increasing the amount of data
used in the matching criterion.

Surface-based method, such as those proposed by Pellizari [119], Jiang
[80, 81], Mangin [101], Lemoine [92] or Hemler [73], are divided in
two steps. First, similar features are segmented from both images. Then,
the best transformation is defined as minimizing the distance between
those features.

Volume-based methods use the complete dataset into account in the
matching criterion. Such methods were proposed by Woods [184], van
den Elsen [162, 161], Maintz [99], Studholme [150], Collignon,
Maes [21, 98] and Wells [47]. The central point of these methods
is how they define the similarity between pixels from modalities where
similar gray-levels do not necessary correspond to similar tissue types.
For instance, Van den Elsen [161] correlates “ridgeness” images to reg-
ister MRI and CT scans. Wells [47] and Maes [98] maximize the mutual
information between images from any two modalities.

7.1.3 Discussion

Registration has been the subject of several important reviews and com-
parative studies, the first of which was made by Van den Elsen [163]
in 1993.

Zuk [189] compared manual and automatic retrospective methods. He
found the automatic surface-based methods to be the fastest and au-
tomatic volume-based methods the most accurate, provided the initial
position of the scans to register is close enough to converge to the correct
minimum.

‘West and most other researchers in the field performed a major compar-
ative study [181, 182], using fiducial markers to define the gold standard
transformation. These results were also used in a later study comparing
surface-based and volume based methods [179, 180]. It concluded that
both approaches can give satisfactory results, but that volume-based
techniques tend to be more accurate, especially in the rotational com-
ponent of the rigid transformation.

On the other hand, there are cases where only surface-based registration

7.2 Localization of transcranial magnetic stimulation 125

Figure 7.1: Transcranial magnetic stimulation of the visual cortex, from
Potts [123].

is possible, because volumetric data is not available in one of the informa-
tion sources to register. For instance, Herring [75] registers CT images
to the physical space for image-guided spine surgery. The physical sur-
face is acquired using a 3DSL consisting of a probe and an Optotrak
system. The image surface is generated by an iso-surfacing algorithm
on a tetrahedral decomposition of the volume data. Grimson [68] pro-
poses a surface-based registration for frameless stereotaxy, image-guided
surgery. Maurer [104] uses a combination of a point-based and surface-
based methods to register head CT images to the physical space.

In what follows, we present two such applications, where the choice of
a surface-based matching criterion is driven by the lack of volumetric
data in one of the modalities.

7.2 Localization of transcranial magnetic stim-
ulation

Transcranial magnetic stimulation (TMS) consists of applying a focal
magnetic field on specific parts of the brain in order to induce motor or
sensitive responses. TMS has been extensively used in research in order
to map the brain functions, for instance by Brasil-Neto [16] for the
motor cortex. It has also been used for therapeutic purposes, such as
the treatment of depression by George [66].

126

Chapter 7. Registration of MR images

Figure 7.2: Experimental setting.

Initial TMS studies used cranial landmarks to define the locations of the
stimulation, which does not take into account the individual variability
in cortical morphology. Recently, Potts [123] has used a 3D optical
tracking system to register TMS with the individual’s MRI. This allows
to locate the stimulation precisely on both the scalp and the cortical
surface, as illustrated at figure 7.1 for a study of the inhibition of the
visual stimulus.

7.2.1 Registration method

The experimental setting used in our method is illustrated at figure 7.2.
Tt is based on a Isotrack 3D localization device. Tt uses two probes, ”p”
and "h”, whose location and orientation relatively to the base station
"b” is known at all times. Probe "h” is attached to the forehead of
the patient and provides a local coordinate system for the head. Probe
"p” is first used to digitize the scalp surface for the registration, then to

localize the magnet during the stimulation.

The first step of the registration process is the segmentation of the scalp
from the MR image. For this, the image is thresholded and median-
filkered. Then, the background of the image is found as the largest
connected component below the threshold level. The scalp is the edge
of the background.

The surface of the head in the physical space is defined as the set §
of points p digitized by the "p” probe and transformed into the "h”

7.2 Localization of transcranial magnetic stimulation 127

EE g EE

&

Maching cihwien

g g
. BB EEEEGEEB

Pt P (egram) Polon P (g s

Figure 7.3: Matching criterion as a function of the translation or rotation
€rrors.

coordinate system. The registration matching criterion is defined as the
mean square distance between this set of points and the MRI-derived
scalp surface 0. Hence, the best transformation T' from the set R of
rigid transformations is

T =argmin{) _ distz(T(p),0)} (7.1)
TeR ey

In this equation, distg(g, O) is of course pre-computed using a 3D Eu-
clidean distance transformation. Because T'(p) is not necessarily located
on the integer grid, the value of distg(T'(p),O) is tri-linearly interpo-
lated from the distance map.

Figure 7.3 studies the evolution of the matching criterion’s value as a
function of the mis-registration. It is a smooth function of the transfor-
mation parameters, so that we use a simple gradient-based minimization
algorithm to find the optimal translation and rotation parameters.

128

Chapter 7. Registration of MR images

Figure 7.4: MRI to physical space registration. Left: unregistered Right:
registered.

7.2.2 Results

The study of figure 7.3 uses synthetic data. The physical surface S is
generated from the MRI scalp, then submitted to a known geometric
transformation. Using this method, we know the exact transformation
that the algorithm should find, which allows us to evaluate its accuracy.

A typical registration result is illustrated at figure 7.4. We applied a
variety of rigid transformations to the synthetic data, including transla-
tions up to 5 cm and rotations from —20° to +20° around each axis. In
all cases, the registration procedure recovers the exact inverse transfor-
mation with sub-pixel accuracy.

Practically, for non-synthetic data, the accuracy of the registration is
limited by the MR image voxel size and the discrete nature of the scalp
surface.

7.3 Registration of MR images with a Computerized Brain Atlas 129

7.3 Registration of MR images with a Comput-
erized Brain Atlas

The Computerized Brain Atlas (CBA) database [8] is based on anatom-
ical information obtained from a cryosectionned brain. It provides a
meshed description of the surfaces of most brain structures, including
sulci and gyri, Brodmann cytoarchitectonic areas and basal ganglia.
This atlas is adjusted to individual brain images which supplies tem-
plates for sulci labelling and delineation of the Brodmann areas.

In [155], matching the CBA with an individual MRI data set is done
manually by choosing the optimum parameters for a number of elemen-
tary transformations that are combined into a general 3D second degree
transformation. The optimization criterion is the visual matching of the
CBA objects, mainly the cortical surface and the ventricular system,
super-imposed on the scan. Although the accuracy of the method has
been demonstrated [142], it suffers from being both time-consuming and
operator dependent.

7.3.1 Registration method

We propose to adapt the above method so that it becomes fully auto-
mated. To achieve this, we define the matching criterion as the distance
between the cortical and ventricular system surfaces and the equivalent
structures in the CBA database. The CBA surface is used as the refer-
ence surface from which the distance transformation is generated. The
MRTI surface is used as the mobile surface, on which the transformation
is applied in order to fit the reference surface.

First, we segment the cortex from the MRI, using a variant of the direc-
tional watershed transform described by Warscotte [177]). The result-
ing object is simplified using a mathematical morphology closing that
merges the sulci with the cortex.

The set of possible transformations 7 = (py,py,p,) — T(7) is defined
using N basis functions f; and 3.N parameters og;.

T(P) = Y ouyy(P) (7.2)
F=0

130

Chapter 7. Registration of MR images

- —- — —fn

SISy
T TS

XX yy Xy

Figure 7.5: Set of elementary first and second degree transformations in
the direction of the z-axis.

with ¢ € {z,y,2}. The affine transform is represented with ¥ = 4,
fj(?) = 1, ps, Py, Pz, and 12 coefficients o4;. The 3D polynomial sec-
ond degree transform uses N = 10, f;(?) = 1, ps, Py, P2> P2 vy Dy
DrPys PaPy> PyPs, and 30 coefficients oy;. The effects of some of these
elementary transformations in 2D are illustrated at figure 7.5.

The matching itself is performed in two steps. First, the best affine
transform is found using the cortical surface only in the matching cri-
terion. Then, the second degree coefficients are optimized using both
the cortical surface and the ventricular system as matching criterion.
In both cases, the minimization of the criterion is performed using a
gradient-descent algorithm in the 3N-dimensional parameter space, af-
ter ortho-normalizing the functions f; relatively to the mobile surface.

7.3.2 Results

The effect of the transformations found by the automatic registration
procedure are illustrated at figure 7.6. The cortical surface and ventric-
ular systems from the CBA appear in grey, the structures from the MR
image in black. The grid allows us to visualize the deformations.

The ultimate aim of computerized atlases is to achieve a 3D represen-
tation of all identifiable anatomical structures in the individual brain.
As shown in figure 7.7, this objective is well reached by the present
work which allows to delineate unambiguously the sylvian fissure (sl),

7.3 Registration of MR images with a Computerized Brain Atlas 131

Figure 7.6: Effect of the registration transformations. Left: Affine trans-
formation. Right: Additional second degree components. Up: Axial cut
Down: Sagital cut.

132

Chapter 7. Registration of MR images

Figure 7.7: Some CBA structures overlaid over the MRI: Cortical sur-
face, ventricular system and a few sulci.

the superior frontal (ssf), the precentral (spc), the central (sc) and the
parieto-occipital (spo) sulci. As clearly seen on the top slice, the tem-
plate for the left superior frontal sulcus does not match with the one of
the subject despite the perfect matching of that sulcus on the contralat-
eral hemisphere. Inter-hemispheric variations in the topography of the
sulcal patterns represents an intrinsic limitation in this approach.

Chapter 8

(zeodesic Distance
Transformation

In this chapter we extend the works of Piper and Gronum [122] and
Verwer et al. [167] on geodesic distances. First, we generalize the def-
inition of geodesic distonces. Secondly, we propose two algorithms to
compute the new geodesic DT. Thirdly we evaluate how accurately these
algorithms epprozimate the Euclidean metric. Finally, we study their
computational complezity.

8.1 Geodesic metrics

As defined in chapter 2, the geodesic distance between two pixels p
and ¢ is the length of the shortest path from p to g. Suppose P =
{p1,p2, ., Pn} 18 a path between pixels p; and p,, i.e. p; and p41 are
connected neighbors for ¢ € {1,2,...,n — 1} and p; belong to the domain
for all 4. The path length I[{P) is defined as

n—1

UP)= Z dn(Di> Pit1) (8.1)

the sum of the neighbor distances dy between adjacent points in the
path. A particular geodesic metric is defined by which neighbors are
considered to be connected and the values of dy for each pair of con-
nected neighbors.

The simplest metric is the geodesic version of the city-block distance,
used in [122, 167, 93]. It is defined as

134 Chapter 8. Geodesic Distance Transformation

Figure 8.1: Left: Domain and object - Right: Geodesic DT with a 3-4
metric.

dv(p,g) =0 if p=g¢
dN(p:Q) =1 if diStE(p:Q) =1
dy(p,g) =occ if dist.(p,q)>1 (8.2)

In order to get better approximations of the Euclidean metric, geodesic
chamfer metrics were also used. Piper [122] uses the 3-4 chamfer metric,
Verwer [167] considers a 5-7 metric, and Verbeek [165] uses a 5 X 5
neighborhood with 1—/2-/5 weights. For ingtance, for the 3-4 chamfer
metric, this gives

dnv(pg)=0 if p=g
drv(p,g) =3 if dist.(p,g)=1
dy(p,g) =4 if dist.(p,q) =2
dn(p,q) = oo if dist.(p,q) > V2 (8.3)

Such a geodesic DT is illustrated at figure 8.1. We compute the geodesic
distance from the dot in the upper right corner, under the constraint that
the domain is restricted to the white pixels. The distances are shown
using a cyclic grayscale colormap so that the iso-distance curves are vis-
ible. Obviously this DT is only a coarse approximation of the geodesic
Euclidean DT defined on a continuous domain.

8.1 Geodesic metrics

13b

Figure 8.2: Left: Geodesic DT, ball size= /2 - Right: Geodesic DT, ball
gize= 6

We propose to use a more general definition of the geodesic DT. Given
a ball By of radius d, the local distances dw in (8.1) are defined as

lﬁtN (p: Q) = d%-StE (p: Q) (84)

if dist.(p,q) < d and there is a path R = {r1,72, ..., } such that p = r1,
g ="Tm, dist,(ry,r541) =1, V1< j<m—1landdist,(p,r;) <d, V1<
7 <m. Otherwise,

dn(p,q) = o (8.5)

‘We call this the Bg-geodesic DT. This means that there is a direct path
between a pixel p and any pixel g in the neighborhood defined by the ball
By, provided there is a path made of direct neighbors only and entirely
included in By(p), that connects p and ¢. This definition allows a large
variety of trade-offs according to the size d. A larger d approximates the
Euclidean DT better in obstacle-less regions. A smaller d follows the
obstacles’ shape better.

This definition is a generalization of those used in [122, 167, 165, 93].
In particular, d = 1 corresponds to the city-block metric, d = /2 is
similar to the chamfer 3-4 metric and d = v/5 corresponds to the chamfer
1 — +/2 — /5 metric used by Verbeek [165]. In figure 8.2, distance maps
using d = /2 and d = 6 are shown.

136 Chapier 8. Geodesic Distance Transformation

8.2 Geodesic DT algorithms

In chapter 2, we saw that the most efficient algorithm to implement
usual geodesic distance transformations was that of Verwer, Verbeek
and Dekker [167]. It scans the pixels in order of increasing distance by
bucket sorting the pixels in the propagation front.

Unfortunately, there are two major hindrances to the use of this algo-
rithm to implement the By-geodesic DT. First of all, the neighborhoods
to consider during the propagation would have the size of By, which is
prohibitive for any non-trivial d. For instance, d = 6 would require to
consider 112 neighbors for each pixel. Secondly, the By-geodesic dis-
tances are real-valued. This makes them unsuitable as buckets’ indexes.

8.2.1 Bucket sorting algorithm

In order to define an efficient implementation of the By-geodesic DT, we
restrict the class of paths under consideration to the paths {p1,p2, ..., pm}
such that

Vi<i<m-1, dn (i pit1) < d
Inc Ny |dn(pi,pi+n)>d
fori=m, 1< dN(p-i—lap'i) <d (86)

That is, all steps but the last one are approximately of length d. This
slightly reduces the accuracy of the EDT approximation by restricting
the path directions to those of the edge of By, instead of the complete
ball. The accuracy of the EDT approximation is studied in section 8.3.

On the other hand, it makes the implementation of the DT much easier.
For all p such that D(p) < d, the DT can be computed similarly to the
PSN algorithm in chapter 3. For d < D(p) < 2.d, the distances can be
computed by propagating from the edge of O @ By, i.e. §(O @ By). For
those pixels, D(p) is defined as

D(p)= min){D(p’)+dfaste(p,p’)} (8.7)

 pYes(0BB,

Similarly, for 2.d < D(p) < 3.d, we propagate from the edge of O @ By ®

8.2 Geodesic DT algorithms 137

By, and so on. More generally, the value of D(p) for a pixel p can be
split into two terms:

D{p) = mi dn(pis Piv1) With pm =p
= S (o pn) + dv(om — 1,m)
= D(pm-1)+dn(Pm — 1,pm) (8.8)

where pp—1 € (OB By®...®By) (m-1 times) andp € OB ByP...d By
(m times).

In the following algorithm, we remember two values for each pixel in
the propagation front. dyepn corresponds to the first term of (8.8) and
is the length of the path from p; to p;m—1. The vector dp is the relative
location of p from p,,_1. It corresponds to the second term of (8.8).

The algorithm proceeds step by step, first computing D(p) in O @ B,
then in (O @ B) @ B, ... Within each step, the propagation is ordered
by bucket sorting on distg(dp). When dist.(dp) > d, the pixel is saved
in a temporary buffer to be used in the following step.

Algorithm 8 By-geodesic DT by bucket sorting.

Input: an image I including object O and a domain M, the size d of
the ball B; defining the metric.

Qutput: a distance map D, with geodesic distance from O constrained
by M

for all p € I do {Initialization}
if pc O then
D)+ 0
put p, (0,0),0 in bucket(0)
else
D(p) +
end if
end for

138 Chapier 8. Geodesic Distance Transformation

repeat {Main Loop}
repeat {dilate by By}
for i=0—d do
process(bucket(i))
end for
until bucket(s) is empty V0O <i <d
bucket(1) < buf fer
until bucket(l) is empty

procedure process(list)
for all p,dp,dpesn in list do
if D(p) = dpa, + dist.(dp) then
for all ne N, do
if p+neM then

new + diste(dp + 1)

Dy + dpath + dnew

if Dyew < D(p+n) then
D(p) — Dnew
if dpew > d then

put p +n,n, D(p) in buffer
else
put p + n, dp +n, dpezy, in bucket(distz(dp + n))

end if

end if

end if
end for
end if
end for
end procedure

8.2.2 Circular propagation algorithm

Unfortunately, the above algorithm isn’t always optimal, as illustrated
in section 8.4. The reason for this is that the order used in the bucket
sorting propagation, distg(dp), may be different from the metric order
D(p). Indeed, the value of dpgy isn’t exactly m.d after m dilations by
By, but may vary because of the discrete shape of By.

Therefore, it is more efficient to replace the bucket sorting propagation
by a variant of Ragnelmam’s circular propagation algorithm [127]. In

8.2 Geodesic DT algorithms 139

this method, all pixels in the propagation front are stored in a single
list, but are only propagated if the value of their distance is lower than
a given threshold. If not, they are left in the list for later processing.
After all pixels in the list have been considered for propagation with a
given threshold, this threshold is incremented and the list is processed
again.

For the Bg-geodesic DT, things are a little more complex. Indeed, in a
non-convex domain, dist.(dp + n) isn’t always larger than dist.(dp). In
particular, when turning around a corner of the domain, it may decrease
locally. A single list circular propagation could then create multiple
propagation fronts. To handle this, we use two lists. listl contains all
pixels for which D{p) < t and list2 those for which D(p) > t. The
threshold { is only incremented once [istl is empty. The algorithm goes
as follows.

Algorithm 9 By-geodesic DT by circular propogation.
Input: an image I including and object O and a domain M, the size d

of the ball By defining the metric.
Qutput: a distance map D, with geodesic distance from O constrained

by M
for all p € I do {Initialization}
if pc O then
D)+ 0
put p,(0,0),0 in listl
else
D(p) +
end if
end for
1+ 0

while listl is not empty do {Main loop}
for all p,dp,dpe, in listl do
if D(p) = dpa, + dist.(dp) then
if D(p) <t then
for all n e N, do
if p+neM then
new + diste(dp + 1)

140 Chapter 8. Geodesic Distance Transformation

Do dpath + dpew
if Dpew < D(p+n) then
if dpew > d then
dpath — D(p)
dp « (0,0)
end if
if Dpew <t then
put p +n,dp +n, dpgp in listl
else
put p+n,dp +n, dpep in list2
end if
end if
end if
end for
else
put p, dp, dpgss 10 list2
end if
end if
end for
swap (listl,list2)
t+1t+1
end while

8.3 Accuracy

As mentioned in section 8.1, the accuracy of a geodesic DT is a trade-off
between how precisely it approximates the Euclidean DT in obstacle free
domains and how closely it follows the obstacles in their corners. The
larger By, the better it approximates the Euclidean DT, but large By
may cut through corners of the domain.

In this section, we focus on the first part of the trade-off, i.e. how closely
the By-geodesic DT can approximate the Euclidean DT on an obstacle
free domain. Let us consider an object pixel ¢ and domain pixel p. The
difference between dist.(p, ¢) and D(p) comes from two sources.

First, when the direction of p — ¢ is not supported by the neighbors
in By, the distance is approximated similarly to the chamfer metrics of
section 2.2.1. This creates a systematic relative error depending on the

8.3 Accuracy 141

~ T
%L v

Figure 8.3: Non-Systematic error

angle made by p —q.

Secondly, the restrictions imposed by (8.6) introduce an additional er-
ror on the last segment of the path. This non-systematic error is null
if dv(pm—1,Pm) = d, it is maximum when dy(pm—1,pm) = 1. Let us
try to evaluate it. In figure 8.3, the path from p to ¢ is composed of
two parts, as in (8.8). D(py—1) is considered as an error free distance
d. dn(pm—1,Pm) is the last segment of the path.

The true value of D(p) is Degac(p) = diste(p, g) = d+e. The computed
value of D(p) is Dyymp(p) = min{d + k,d + v)} with max{h,v} = L
The error is E = Dyymp(p) — Degare(p) = min{d + h,d +v} —(d+e) =
min{h,v} — e. It is maximum for a 45° orientation, where £ = 1 —
cos(45°) = 0.3 pixel. This non-systematic error is an absolute error, and
its importance fades for large distances.

In order to reduce the non-systematic error, one can use larger neigh-
borhoods than N4 during the propagation process. In particular, with
Ng, the non-systematic error is reduced to E = 1 — cos(22.5%) = 0.075
pixel.

In figure 8.4, we show the systematic errors for 3 geodesic DT algorithms:
the bucket sorting algorithm using N4, and the circular (ordered) prop-
agation algorithm both with Ny and Ng. We notice that the use of Ng -
suggested to decrease the non-gystematic error - also decreases the sys-
tematic error. Indeed, using Ng in (8.6) increases the class of acceptable
paths, and adds a few directions to §(Bg).

142

Chapter 8. Geodesic Distance Transformation

Maimum systematic ermor (¥)
1

=

. T
1] —+— 4-Nbuckek
—&— 4-N ordered
—&— 8-N ordered

0 15 20 25 0
Ballsize

Figure 8.4: Systematic error

8.4 Computational complexity.

In order to evaluate the computational cost of the above algorithms, we

apply them to the image of figure 8.1. For this test image, we compute

the Bg-geodesic DT for balls of size 1 < d < 9 using the three same

algorithms as in section 8.3.

Figure 8.5 shows the computational cost of the bucket sorting and cir-
cular propagation algorithms according to the ball size d. The costs of

the circular propagation algorithms are independent of the ball size d.
In contrast, the bucket sorting algorithm has a cost highly dependent
from the ball size. It is sometimes as fast as the others, and sometimes

more than 4 times slower.

Similar regults were obtained from a variety of other test images.

8.4 Computational complexity. 143

T
! | = 4N bucketz
L | & 4-N ordered
i) —8— B-Nodered [

1.2
i ;
@ ;
E B
£ :
Z 08 :
o ;
0 ;
Doy oy @ 3 W, : : ; 3
PP AR SRS ST b e AR b i
o 1 1 1 1 1 1 1
1 2 3 4 5 & 7 & 9
Ball size

Figure 8.5: Computational complexity of the geodesic DT algorithms

144 Chapter 8. Geodesic Distance Transformation

Chapter 9

Application: Camera
path-planning in virtual
endoscopy

In this chapter, we illustrate the use of geodesic distance transformations
in a virtual endoscopy application. First, we describe virtual endoscopy,
its potential applications and some of the technical challenges it faces.
Secondly, we show how the geodesic distance propagotion can be back-
tracked to provide the shortest path between two points. This is used to
define the optimal path for the camera that flies through the 3D model
of the organ. Thirdly, we propose o path centering technique, based on a
snoke model that smoothes the path while maximizing the distance from
the path to edges of the model. Finally, some experimental results are
presented.

9.1 YVirtual Endoscopy

Over the last 5 years, virtual endoscopy has emerged as a new imaging
and visualization technique to explore the human anatomy. It is proba-
bly best described by Jolesz et al. in [85]:

“Endoscopy is used to view the inner surfaces of hollow organs in a continuous fashion
using optical, video-assisted technology. By changing the position of the endoscope,
the operator can view the ingide of an organ while controlling the viewing position
and angle of the probe. [...]

Endoscopy yields detailed anatomy of the inner surfaces of a displayed wall segment

146

Chapier 9. Virtual endoscopy

s

Figure 9.1: Virtual bronchoscopy. Left: 3d model and camera position.
Right: endoscopic view. (image from Jolesz et al. [85])

[---] The method provides a direct, relatively high resolution views and, in most cases,
obtaing access through natural orifices or small incisions (i.e., laparoscopy). Nonethe-
less, endoscopic procedures can be uncomfortable and sedation or anesthesia may be
required. Furthermore, endoscopes display only the inner surface of hollow organs
and yield no information about the anatomy within or beyond the wall. This limita-
tion prevents evaluation of the transmural extent of tumors and limits the ability to
localize the lesion relative to surrounding anatomic structures.

CT and MRI provide cross-sectional images in which the inner surfaces of hollow or-
gans are displayed at a much lower resolution than by endoscopy, but the techniques
are noninvagive. Conventional slice-by-slice presentation of these data precludes con-
tiguous viewing of the inner wall, forcing the radiologist to create a mental picture
of anatomic continuity. This slice-based visual inspection is quite difficult and may
be faulty, especially with highly convoluted tubular organs like small bowel or tortu-
ous blood vessels. Traditional computer integration of cross-sectional data into 3D
renderings have provided only outer surfaces of organs, which in the case of hollow
or tubular structures are diagnostically less important. Despite these disadvantages,
volumetric CT and MRI data can provide information not accessible by the endo-
scope. These important features include: information on tissue extending through
and beyond organ walls, and the anatomic context of the entire volume, which per-
mits correct localization of the legion in relationship to adjacent anatomic structures.

Virtual endoscopic or fly-through methods [85, 84, 65, 171, 111, 172] which ¢ombine
the features of endoscopic viewing and cross-sectional volumetric imaging may pro-
vide an advance in diagnosis, however, so far there are no comparative clinical data
to demonstrate the advantages of virtual endoscopy. Nevertheless, virtual endoscopic
presentation of image data enables the operator not only to explore the inner wall
surfaces but also to navigate ingide the virtual organs extracted from CT or MR im-

ages. [.J"

9.1 Virtual Endoscopy

147

§ \\?\\ “\\\\\‘\‘\1\\\\&\

§\\‘\§\\ \\% \\)

\\\\
................ \\ LIY f\

Figure 9.2: Graphical user interface for the interactive camera control.
(Image from Frankenthaler et al. [57])

%

Because of these promising features, virtual endoscopy has been applied
to many different organs, including bronchoscopy [171, 111], colonoscopy
[172], pancreatoscopy [113], laryngoscopy [58], sinus endoscopy [67] or
otoscopy [57, 90].

The extension of the technique to such different areas requires an appro-
priate choice of 3D imaging technique - Computed Tomography (CT),
MR Imaging or a combination of those - , of the contrast agents, ... The
image volume is then subject to a number of image processing tools in
order to create a 3D model of the organ one wants to visualize. This
model can then be either volume [134] or surface [97] rendered, the later
allowing faster (interactive) visualization. For instance, in figure 9.1, the
surface of the model was generated using the marching cubes algorithm
[96].

After the 3D model of the organ has been created, the last critical step
is the selection of the camera’s position. Jolesz et al. [85] propose three
techniques to guide the virtual camera through the surface models:

o Manual camera movement, where the mouse controls the cam-
era position and focal point interactively. For instance, figure 9.2
shows the graphical user interface used by Frankenthaler et al.
[57].

148

Chapier 9. Virtual endoscopy

o Key-framing, that interpolates between user-selected key points,
using cubic splines to calculate intermediate parameter values at
any desired resolution. This technique was used to generate motion
through open interior and exterior environments.

o Automatic path planning, a technique adapted from Lengyel’s
robot path planning algorithm [93]. The camera is considered
as a point robot and the walls of the organs as obstacles. The
path planner labels all voxels with a distance to the terminus of
the organ to be explored. Given a starting point, the path plan-
ning algorithm finds the shortest path to the goal using a steepest
descent algorithm.

Automatic path planning is particularly useful for tubular organs, that
present a challenge for both manual camera movement and key-framing.
Indeed, manual camera movement is particularly difficult within con-
fined spaces.

Unfortunately, the automatic path planning technique suffers from sev-
eral imperfections. Lengyel’s algorithm uses the city-block metric in
the geodesic distance computation. This restricts the path to directions
along the axis, which produces an unpleasantly jagged camera move-
ment. In the order to compensate this effect, the path is smoothed.
This can in turn introduce a new adverse effect, when the camera path
crosses the object boundaries and includes positions outside of the organ.

This chapter proposes methods to improve the quality of automatic path
planning. In section 9.2, we show how the geodesic DT algorithm of
chapter 8 can be adapted to compute the shortest path between two
points. In section 9.3, we propose a new smoothing technique based on
the snake model, that searches a trade-off between the smoothness of
the path and its centering in the middle of the bowel.

9.2 Computing the shortest path from the By
geodesic DT

In [93], the shortest path between pixels ¢ and r is found as follows.
First, the geodesic distance from ¢ is computed. Then, the path is gen-
erated by steepest descent from r. Pixel r is the first point of the path,

9.2 Computing the shortest path from the By-geodesic DT 149

then the neihgbor of r with the smallest distance value, then the neigh-
bor’s neighbor, and so on until g is reached.

Using the Bg-geodesic distance transformation in the first step, the
steepest descent cannot be used to backtrack the distance propagation
from r to ¢. Indeed, around corners of the domain, D(p) may have lo-
cal minima when the obstacles are smaller than B;. Instead, we choge
to store explicitely the origin of the propagation for each pixel, that is
pixel py—1 in eq. (8.8). The distance propagation can then be easily
backtracked by iteratively looking up the origin of the current last pixel
in the path. The algorithm goes as follows

Algorithm 10 Computes the shortest path between two points.

Input: an image I and a domain M, points ¢,7 € M, the size d of the
steps in the path.

Output: The shortest path P = {p1,p9,....,pm} Withp, =1, py, = ¢,
pi €M, Vi and dn(pi, piy1) = d

for all p € I do {Initialization}
D(p) +

end for

D(g) + 0

put ¢, (0,0),0 in lsstl

t +— 0 {Geodesic DT, where we keep track of Origin(p) for each pixel}
while [listl is not empty do
for all p,dp,dpes in listl do
if D(p) = dpa, + dist.(dp) then
if D(p) <t then
for all ne Ny do
if p+neM then
Onew — dist.(dp + 1)
Dipeng dpath + dnew
if Dpew < D(p+n) then
Originlp+n)«<p—dp {*}
if dpew > d then
dpath A D(p)
dp + (0,0)
end if

150

Chapier 9. Virtual endoscopy

if Dy <t then
put p+n,dp +n, dpep in listl
else
put p +n,dp +n, dpgp in list2
end if
end if
end if
end for
else
put p, dp, dpais, In list2
end if
end if
end for
swap (listl,list2)
t+1t+1
end while

p1 + 1 {Path generation: P = {p1,pa, ...} Withp1 =7, p,, = ¢ }
141
while p; # ¢ do
Piy1 + Origin(p;)
t+—i+1
end while
m 414

The core of the algorithm is highly similar to that of section 8.2.2, with
the only additional line marked by {*}. The initialization is modified
to take ¢ as the only object pixel. The path generation step is of course
new. Note that it can be used to generate paths from any pixel r to the
same target g.

The result of this algorithm is illustrated at figure 9.3 and the synthetic
2D data used in figures 8.1 and 8.2.

9.3 Path centering

The path found at figure 9.3 is visibly a good approximation of the short-

est path between the two points. Tt follows the corners of the domain
when it bends and it crosses open spaces in straight lines. It does not

9.3 Path centering 151

Figure 9.3: Shortest path. Left: Domain and points to link Right: path
computed by the path-planning algorithm with d = 6.

present the jagged-ness of Lengyel’s paths.

On the other hand, it is not the optimal path for our virtual endoscopy
application. In colorful terms, the fly through behaves too much like a
formula one to be cogy for the passengers. That is, the camera should fol-
low a more centered path through the bowels, while remaining smooth.

This behaviour can be obtained using a variant of the snake model in-
troduced by Kass et al. [89]. In this model, the path is considered as
a parameterized curve - or snake - v(s) = (z(s),y(s))T with s € [0,1].
The snake evolves in order to minimize an energy defined as

2
+ wa

v

05?2

ov

s + P(v)ds (9.1}

E(v) =/01w1

where w1 and wy are smoothing terms and P(v) is the image term. In
segmentation application, P(v) is typically a decreasing function of the
image gradient, forcing the snake to move towards the edges in the im-
age.

Typically, equation (9.1) is solved by deriving an evolution equation,
then solving it numerically using finite differences. Practically, it means

iterating

v = (I+7.A)". (v' + F(v)) (9.2)

152

Chapier 9. Virtual endoscopy

Figure 9.4: Left: Euclidean DT from the walls of the maze Right: Cen-
tered path

where I is the identity matrix, 7 the chosen time step, A the smoothness
matrix corresponding to the w; and wy terms and F(v) the image force
derived from the potential energy P(v).

In order to center and smooth the path in figure 9.3, we adapt the snake
model as follows. First of all, the image potential energy is used to
drive the snake towards the center of the bowel. To achieve this, we
use a decreasing function of the Euclidean distance from the edges of
the domain, illustrated at figure 9.4. Also, the force deriving from this
potential only needs to applied perpendicularly to the snake, because
the parallel component would only modify the sampling of the curve
and not its location. Therefore, the image force is defined as follows

Flo) = GTUS—@ (93)

|v]?
with G(v) = —V(—D(v)) (9.4)

with arrows omitted over v where its vectorial nature is not important.

For the smoothing term, we use a simplified model. ws is set to 0 so
that only the first derivative is used. Then, (I +7.4)~! is approximated
by I — r.A. Although this is potentially less stable than matrix inver-
gion, experiments show that the smoothness of the distance-based image
energy is a sufficient guarantee of stability. With this simplified model,
the snake iteration can be de-coupled into two sub-iterations

9.4 Experimental resulis 153

vt = ot Fv?) (9.5)
vtE) = (1_r).vi‘(fa)+%.(u*'(fa—1)+v*'(fa+1)) (9.6)

where v(¢) is the discrete representation of the curve v.

In our experiments, the snake converges in a few iterations and stabi-
lizes itself very robustly. The resulting centered and smoothed path is
illustrated at figure 9.4.

9.4 Experimental results

The method proposed in sections 9.2 and 9.3 was applied on real med-
ical data, for virtual endoscopies of the aorta and of the colon. The
aorta is a relatively smooth structure, but it contains several branches.
The colon is a very complex structure, but has a simple tubular topology.

The aortascopy was performed on a structure manually segmented from
the abdominal CT of figure 9.5 by doctors at the Surgical Planning Lab-
oratory - Boston, MA - as part of their abdominal atlas. The CT image,
and the atlas derived from it, is made of 114 slices of 256 x 256 voxels,
which requires to adapt the algorithm of section 9.2 to 3-dimensgional
anisotropic data. This does not present any major difficulty.

The typical result generated by an algorithm such as Lengyel’s is illus-
trated at figure 9.6. The path is composed of segments in a reduced
set of directions, which makes it irregular. It touches the edges of the
structure in all turns in order to keep the path as short as possible.

The results of our algorithm are found in figure 9.7. The paths show
similar qualities to those computed on synthetic 2D data at figure 9.4.
The path on the left is the shortest possible. It is relatively smooth
thanks to the variety of possible segment directions. The path on the
right was smoothed and centered.

The colonoscopy was performed using the CT scan of figure 9.8. Be-
cause it was filled with air, the colon appears as a darker structure,
which makes it possible to segment using a simple threshold. The seg-
mentation and generation of the 3D model from the CT volume were

154 Chapter 9. Virtual endoscopy

Figure 9.5: Computed Tomography of the abdomen. The aorta is shown
using a white arrow in slice 25.

9.4 Experimental resulis 155

Figure 9.6: Virtual endoscopy of the aorta: camera path generated by
an algorithm similar to Lengyel’s

Figure 9.7: Virtual endoscopy of the aorta. Left: Shortest path Right:
Path centered and smoothed by the snake energy minimization.

156 Chapier 9. Virtual endoscopy

a————
e g,
e o,

Figure 9.8: Computed Tomography of the colon.

9.4 Experimental resulis 157

Figure 9.9: Left: Shortest path Right: Centered path flying through the
colon

S

Figure 9.10: Endoscopic view

provided by Dr. Shigeo Okuda, of the SPL.

The paths computed by our method are shown at figure 9.9. Once again,
we show both the shortest and the centered paths. This time, one can
see very abrupt changes in directions on the shortest path where the
colon turns. Those abrupt changes are smoothed on the centered path.

Finally, a typical colonoscopic view is illustrated at figure 9.10. Unfortu-
nately, the paper medium does not allow us to show the dynamic visual

158 Chapier 9. Virtual endoscopy

effect of the fly-through.

Chapter 10

k-NN classification and
k-distance transformation

In this chapter, we extend Warfield’s work on fast k-NN classification
for multi-channel image data [175]. First, we present a short review of
k-NN classification methods. Then, we describe ¢ new k-DT algorithm
by propagation. Finally, we show that it has an optimel algorithmic
complexity.

10.1 Introduction

The k-Nearest Neighbors (k-NN) classification rule is a technique for
non-parametric supervised pattern classification. Given the knowledge
of N prototype patterns (vectors of dimension D) and their correct clas-
sification into several classes, it assigns an unclassified pattern to the
class that is most heavily represented among its k& nearest neighbors in
the pattern space.

The first formulation of the above rule appears to have been made by
Fix and Hodges [53] in 1951. They established the consistency of the
rule for sequences such that ¥ — oo and k/N — 0. In [54], they inves-
tigate the small sample performance of the rule numerically, under the
assumption of normal statistics.

The ¥ — NN decision rule makes no assumption on the underlying prob-
abilistic distribution of the samples points and of their classification.
Therefore, the probability of error R of this rule must be at least as

160 Chapter 10. K-Nearest Neighbors

large as the Bayes probability of error B* - the minimum probability of
error when the distribution is known. Cover and Hart [24] show that,
with certain statistical assumptions, the conditional risk for the 1-NN
rule is B < 2.R*. For the k-NN rule, the risk is bounded by (1+1/k)R*
[23]. Thus, when k¥ — o0, R — R*.

If one implements the &-NN rule with a brute-force method to classify
F patterns using N prototypes, it requires F. N distance computations
and o{F.N.log(N)) comparisons. This is often unpractical with large
data sets, and has led to the research of efficient algorithms.

Hart [71], Gates [63] and Tomek [157] reduce the number of proto-
types to consider while trying not to affect the accuracy of the resulting
classification. Hart’s Condensed Nearest Neighbor (CNN) and Gates’
Reduced Nearest Neighbor (RNN) rules only apply to 1-NN classifica-
tion according to their authors.

Belkasim [4] proposes to make use of the natural clustering of the train-
ing data to reduce the number of prototypes to which distances must
be computed. In the worst case, this partitioning of the prototype data
has no benefit.

Fukunaga and Narendra [60] propose a branch and bound approach,
later improved by Kamgar-Parsi and Kanal [87], Niemann and Gop-
pert [115] and finally Jiang and Zhang [83]. In this approach, the
prototypes are hierarchically decomposed into disjoint subsets. A pow-
erful tree-search algorithm, the branch and bound method (see survey
by Lawler [91]), is then applied to the resulting groups.

Friedman [59] orders the training data along the axis with the maxi-
mal sparsity for each pattern. This restricts the computations to a band
around the projection of the test data onto this axis. The expected
number of distance computations is reduced to O(F.k/2.N1=1/D) with
D dimensional vectors.

Finally, Warfield [175] considers a particular type of applications where
the number of possible patterns is much smaller than the number of pat-
terns to classify. One such application is the classification of MRI data,
where patterns consists of 2-3 channels (D) of data quantified over a

10.2 The k-DT algorithm. 161

small range of values, for a 3D volume including typically 1 — 6 x 108
voxels. Then, it becomes efficient to compute a lookup table for every
possible pattern, then to classify the voxels by accessing the location of
their values in the lookup table.

The computation of this lookup table is essentially a k-distance trans-
formation problem, where the image is the pattern space and the object
pixels are the prototype patterns. Warfield’s k-DT algorithm is based
on Borgefors’ chamfer DT [10] in 2D and on Ragnelmam’s corner EDT
[128] in higher dimensions. The difference with those methods is that
the & nearest patterns (object pixels) are considered, instead of 1. Tt
goes ag follow:

Algorithm 11 Warfield’s k-distence trensformation

Tnsert training data patterns identifiers into the map.
for all distance transform mask scans do
for all pixels p in the map do
Propagate the k-NN identifiers from each mask edge pixel to the
center pixel p,
Compute distance from p to each of the training patterns,
Sort in order of increasing distance,
Select the identifiers of the & nearest patterns
end for
end for

The method requires (2P F(D+1)k) distance computations and O(F(D+
1)k log((D + 1)k)) comparisons. Warfield shows that - for this type of
applications - it is an order of magnitude faster than the above B-NN
methods.

10.2 The k-DT algorithm.

In terms of k-NN classification, the k-DT problem can be formulated as
follows: given a set of N prototype patterns g(l) labeled from { = 0 to
[= N — 1, determine the labels of the & nearest prototypes kNN(p) =
{NN;(p) , 0 <1 < k} for every possible pattern p in the pattern space
I

162 Chapter 10. K-Nearest Neighbors

Similarly, the 5-DT problem can be described in familiar image terms:
given a set of N object pixels g(I) € O labeled rom [=0to{=N—1,
determine the % nearest object pixels kNN(p) for every pixel p in the
image I.

Although both formulations look similar, there is a minor difference
in the fact that the “image” formulation supposes that prototypes are
unique, i.e. that ¢(l1) = ¢(l3) = [= l5. The “pattern space” formu-
lation does not make this assumption. There can be several identical
patterns among the prototypes.

The key to our approach is to notice that in algorithm 11, a lot of
computational power is wasted in two ways. First, as pointed out by
Ragnelmam in [127], the raster scanning procedure propagates the in-
formation further than needed. This is especially true for pattern spaces
in higher dimensions, where 2° scans are performed. Secondly, a large
part of the computational cost is due to the sorting procedure.

‘We propose to generate the k-DT using ordered propagation to scan the
pattern space, starting from the prototype patterns, then to their neigh-
bors, their neighbors’ neighbors, ... by order of increasing distance. The
ordered propagation is achieved by bucket sorting the patterns in the
propagation front, similarly to the Euclidean DT algorithm of chapter 2.
The benefits of the method are twofold. First the propagation of every
label is restricted to the zone of influence of the pattern it represents.
Secondly, it is possible, by delaying the updates of the propagated pat-
terns, to avoid the sorting procedure completely.

For every pixel p in the propagation front, we store both its coordinates
(Py13Pass s Pap) and the propagating label I. The propagation front is
implemented as a number of buckets bucket(index). A propagating label
! at pixel p is stored in bucket(diste(p, ¢(1))). By emptying the buckets
by increasing #ndex value, we scan the image in order of increasing dis-
tances.

In addition to the kNN(p) label maps that we generate, we store three
additional temporary information for each pixel p. #.,,(p) indicates how
many labels have reached p at any step of the algorithm. d,, is the
value of the distance from p to the prototype of the last label to have

10.2 The k-DT algorithm. 163

reached p, i.e dyy = distg(p, ¢(NNijur—1(p))). If more than one label
among kNN(p) correspond to a prototype at distance dyyr, then igey,
stores the first 4 for which dyr = diste(p, g(NN;(p))).

Let us now consider that distance d has been reached, i.e all buckets(d'),
d’ < d have been emptied and that the couples (p,!) in bucket(d) are
being processed. Label [should be added to kNN(p) if two conditions
are fulfilled. First, there should be less than & labels in kNN(p) already,
since all labels in there are such that distg(p,¢(l)) < d, and therefore
better candidates than {. This is easily tested by checking that ¢y < k.
Secondly, label I should not belong to kNN(p) yet. If d.(p) < d, it
obviously does not. Otherwise, i.e when d,.(p) = d, all labels NN;(p)
with igme < 4 < 4 should be checked.

Finally, when a couple (p,{) is added to kNN(p), label { is then propa-
gated towards p’s neighbors. Of course, only those neighbors n € N that
lead to distg(p+mn, g(1})) > d need to be considered, i.e. those in the same
direction as p —g(I). Practically, we use the 2D-direct neighborhood, for
which this test is extremely simple. For instance, in 2 dimensions, with
the 4-direct neighborhood, neighbor nn = (1,0) is used if p, — g({)x > 0,
n=(—1,0) is used if p; — g({)s <0, ...

Algorithm 12 k-DT algorithm by bucket-sorting propagation.

Input: N prototypes ¢(I) with labels {, 0 <{ < N
Output: the sets kNN(p) = {NN;(p), 0 <i <k}, VpeT

for all pe I do {Initialization}
tour (p) < 0
eur (p) +— —1
tdeur (p) undefined
NN;(p) undefined Vi, 0 < i < k
end for
for I=0to N -1 do
put (g(I),1) in bucket(0)
end for
d+<+ 0

repeat {Main loop}

164 Chapter 10. K-Nearest Neighbors

while bucket(d) is not empty do
get (p,1) from bucket(d)
if ieur(p) <k then
if duy(p) < d then
assign(p,)
propagate(p,)
else { in this case, dew(p) = d}
if NNj (p) #1 Vj, 'ﬂ-dcurcp) <J< 'ﬁ-cur(P) then
assign(p, 1)
propagate(p,)
end if
end if
end if
end while
d+—d+1
until all buckets are empty

procedure assign(p,{)
NNi,,o(p)(P)
if dr(p) #d then
'idcur(p) A 'icur(p)
end if

eur (p) + d
end procedure

procedure propagate(p,!)
for all ne N do
if (p—q(l))n>0 then
put (p + n,1) in bucket(distg (p + n, g(1}))
end if
end for
end procedure

As usual, the implementation of this algorithm requires a special atten-
tion. In particular, the dynamic data structure used to implement the
buckets should allocate memory in chunks and not element by element.
Tn the experiments below, we use chunks of 2048 elements each. On the
other hand, the ¥ NN; label maps and the additional temporary infor-
mation are stored statically.

10.3 Computational complexity. 165

Finally, the computation of dist g(p, ¢) is fastened by using small lookup
tables for the squares of integers, i.e. distg(p,q) = X2 :5q[ps; — Gx;]
with sq[r] = n? for all integer » within the useful range. Of course, any
other integer-value metric could be used instead of distg.

10.3 Computational complexity.

In [175], it is shown that using a kDT to compute a lookup table is
the most efficient method to perform the k-NN classification of a large
data set where the number of possible different patterns is comparable
of lower than the size of the data set. Thanks to this result, we can
restrict the present complexity analysis to showing that the algorithm
of section 10.2 has an optimal computational complexity for a k-DT.

The output of the algorithm is made of ¥ maps covering the F patterns.
The complexity of the output is therefore O(F.k). This is the absolute
lower bound for the optimal algorithmic complexity of a k-DT. More
realistically, a k-DT algorithm should at least consider the neighbors of
a pixel to compute its value, which means a O(F.D.k) complexity in D
dimensions.

In algorithm 12, the procedure assign(p,l) is called exactly F.k times,
since as s500n as NNj.(p) (p) is assigned a value, icur(p) is incremented.
Because they are always called together, the procedure propagate(p, ()
is also called exactly F.k times. In that procedure, the neighbors of p
are entered in the buckets structure. Using 2D-direct neighborhoods,
restricted to those in the same direction as p — ¢(I), there are between
D and 2D neighbors propagated for each of the F.k pixels that enter
propagate(p,l). Thus, the total amount of elements passing through the
buckets is O(F.D.k).

The distance distg(p,¢(l) is only computed inside the propagate(p, ()
procedure, in order to determine in which bucket (p,!) should go. Thus,
the total amount of distance computations is exactly the same as the to-
tal amount of elements passing through the bucket structure, i.e O(F.D.k).

Finally, the number of comparisons performed inside the main loop for

166

Chapter 10. K-Nearest Neighbors

—#— n=256
—— n=512
45~ —&— n=1024 [

=]
T

CPU tima park.n®
]
th
T

]
T
1

o L L L L L L L L L
4] 1 2 3 4 5 B 7 a 9 10

k — number of neighbors

Figure 10.1: 5-DT algorithmic complexity: dependence from the number
of neighbors k for several image sizes

an element (p,l) taken from bucket(d) is fixed, unless d . (p) = d. In
this case, it will be compared %.,+(p) — #deur (p) times. This number is
in average very low when prototypes are unique. The total number of
comparisons is then also O(F.D.k).

In the worst case, with % identical prototypes at every prototype loca-
tion, the average number of comparisons is close to k. Tt raises the num-
ber of comparisons to O(F.D.k?). This could be avoided by replacing
prototypes (represented by a label [} by prototype locations (represented
by a label ! and a number m of occurrences in that location). Neverthe-
less, for practical applications, this does not appear to be needed.

In order to confirm this theoretical analysis, we ran 3 experiments on
synthetical 2D data, varying the number & of nearest neighbors, the size
of the n x n images and the number N of prototypes. In experiment 1
(Figure 10.1), k varies from 1 to 10, 3 values of n are considered and
N is fixed to 1000. In experiment 2 (Figure 10.2), n varies from 128
to 1024, 3 values of k are considered and N = 1000. In experiment 3
(Figure 10.3), N varies from 100 to 1000, » is fixed to 512 and 3 values

10.3 Computational complexity. 167

Innon
—th =

il

.
T
ES
*
*
1

CPU tima park.n®
L
T
1

]
T
1

(o] 1 1 1 1 1 1 1 1 1 1
Q 100 20 200 400 =00 BOO T00 800 200 1000 1100
n - image size

Figure 10.2: k-DT algorithmic complexity: dependence from the image
gsize (n X n) for several values of k.

of k are considered. Tn all experiments, the prototypes are randomly
generated.

Theoretically, the computational complexity is O(F.D.k) = o(n?.2.k),
so that the ratio of the needed CPU time by k.n? should be a constant.
The 3 experiments were performed on a Pentium IT at 233 MHz com-
puter. CPU times were recorded and their ratio to k.n? are displayed in
Figures 10.1 to 10.3.

In experiment 1 (Figure 10.1), the CPU time per k.pixel is constant for
k > 3. For k <3, the fixed cost of handling the additional information
N fpp,deyr and fg.r 15 2 non-negligible factor, so that the CPU time
per k.pixel is slightly higher.

In experiment 2 (Figure 10.2), the image size has no influence on the
CPU time per k.pixel. In experiment 3 (Figure 10.3), the number of
prototypes has no influence either. In both Figures, the line for which
k = 1 is significantly higher than the other two, as suggested by the
regults of experiment 1.

168

Chapter 10. K-Nearest Neighbors

B T T T T T T T T
—4— k=1
—— k
—&— k=10
sk i
4k i
. . m
. —
E
=
a
2o il
5 —
3 3 m ¥
sl m
1k m
0 1 1 1 1 1 1 1 1
100 200 300 400 SO0 BOO TOO a00 @O0 1000

M — num bar of prototy pas

Figure 10.3: 5-DT algorithmic complexity: dependence from the number
N of training patterns for several values of k.

Distance computations Comparison operations

Cover F.N O(F.N.log(N))

Friedman O(F.k'/P N1-1/D) D.N.log(N)+O(F.k/P N1-1/D)
Warfield O(2P.F.(D + 1).k) O(2P.F.(D + 1).k.log((D + 1).k)
This 5-DT O(F.D.k) O(F.D.k)

Table 10.1: Complexity of k-NN classification algorithms, with F' the
number of patterns to classify, N the number of training prototypes, k
the number of nearest neighbors and D the dimension of the pattern
space.

Finally, let us notice that the CPU time required by the k-DT algorithm
can be further reduced if, in the application considered, patterns that
are too far away from all prototypes would better be not classified. In
this case, the propagation can be stopped as soon as a critical distance
is reached, even though the whole pattern space hasn’t been labeled yet.

In table 10.1, extended from the original in [175], the performance of
this 5-DT algorithm is compared to the brute force algorithm of Cover

10.3 Computational complexity. 169

[24], and those of Friedman [59] and Warfield [175].

170 Chapter 10. K-Nearest Neighbors

Chapter 11

Application: tissue
classification in T1, T2 MR
images.

In this chapter, we apply the k-NN rule to the supervised classification of
tissues in pairs of T1- and T2-weighted MR images of the brain. First,
we remind the noture of the T1 and T2 signals in MRI, and their medical
stgnificance. Then, we review o few supervised methods to classify multi-
channel MR images of the brain. Finally, we illustrate this by classifying
a T1-T2 pair of images of a brain with multiple sclerosis lesions.

11.1 The physics of T1- and T2-weighted MRI

Protons in a magnetic field have a microscopic magnetization, and act
like toy tops that wobble as they spin. The rate of the wobbling, or
precession, is the regonance or Larmor frequency. In the magnetic field
of an MRI scanner, there is approximately the same number of proton
nuclei aligned with the main magnetic field By as counter aligned. Still,
the aligned position is slightly favored because the nucleus has a lower
energy in this position. This results in a net macroscopic magnetization
pointing in the direction of By.

The exposure of the nuclei to a RF radiation (the B; field) at the Lar-
mor frequency causes the nuclei in the lower energy state to jump to the
higher energy state. At the macroscopic level, this causes the net magne-
tization to spiral away from the By field. In a field of reference rotating

172

Chapter 11. Tissue classification in T1,T2 MRI

Enplusiiml megnattain
g

e e zatin
e

R

—

z Er) 1 [T a an 2] [r) l] z 21 1
bmain T1 parkein b In T2 partacis

Figure 11.1: T1 and T2 relaxation

with the field, the net magnetization vector rotates from the longitudi-
nal direction to a flip angle proportional to the duration of the RF pulse.
After some time, the magnetization vector becomes perpendicular to the
main field By. In this position, it can be detected by the MRI scanner.
For angles different from 90”, the perpendicular component of the mag-
netization vector can still be detected, but the signal is of course weaker.

MR Imaging is based on the observation of the relaxation that takes
place after the RF pulse has stopped. The return of the excited nuclei
from the high energy to the low energy state is associated with the loss
of energy to the surrounding nuclei. Macroscopically, this spin-lattice
or T1 relaxation is characterized by the longitudinal return of the net
magnetization to its maximum length in the direction of the magnetic
field. This return is an exponential process of the form of 1 — ¢~ %/T1
(Figure 11.1). The T1 relaxation time is the time constant of this expo-
nential, i.e. the time needed for the magnetization to return to 63% of
its original value.

Microscopically, T2 relaxation, or spin-spin relaxation, occurs when the
spins in the high and low energy state exchange energy but do not loose
energy to the surrounding lattice. Macroscopically, this results in a loss
of transverse magnetization. Once again, T2 relaxation is a exponen-
tial process, in the form of ¢=%/T2 (Figure 11.1), and the T2 time is the
time needed for the transverse magnetization to lose 63% of its value.
In pure water, the T2 and T1 times are approximately identical. For
biological material, the T2 time is considerably shorter than the T1 time.

By varying imaging parameters such as TR (repetition time) and TE

11.2 T1,T2 classification 173

Figure 11.2: T1 and T2 MR images.

(echo time), it is possible to weight the IRM signal to produce T1-, T2-
or PD-weighted (proton density) images. From a medical perspective,
it means that MR Imaging can provide multiple channels to observe the
same anatomy. For instance, Figure 11.2 shows T1- and T2-weighted
images of the same brain. Different tissues appear differently in both
images. White matter appears in a light grey in T1 and a dark grey
in T2. Grey matter appears grey in both images. The Cerebro-Spinal
Fluid (CSF) appears black in T1 and white in T2. The background of
the image (air) appears black in both images.

11.2 T1,T2 classification

The classification of biological images into tissue components is an old
problem, and many techniques have been used over the years. Clas-
sical methods range from simple thresholding to more sophisticated
techniques based on local features such as the median, the variance,

These techniques, however, do not always take advantage of the
multi-dimensional nature of the MRI data, which can provide informa-
tion about different tissue parameters, such as T1 and T2 relaxation
time, proton density (PD}, ...

On the other hand, multi-dimensional data classification had been used
extensively in the area of remote sensing. Vannier [164], in 1985, was
first to adapt those techniques to medical imaging and propose to use

174 Chapter 11. Tissue classification in T1,T2 MRI

the multi-spectral nature of MR images.

Supervised classification techniques all work similarly. A few samples
of each tissue types are manually selected. Their values (T1,T2,...} in
the pattern space are used to train a statistical classifier. The complete
data set is then classified automatically.

Several such classifiers have been proposed. For instance, Ozkan [117]
proposes to use Artificial Neural Networks (ANN), and shows that it
performs better than a maximum likelihood classifier based on the as-
sumption that the data can be modeled with multivariate normal dis-
tributions. ANN was successfully applied to the classification and de-
tection of multiple sclerosis (MS) white matter lesions by Zijdenbos
[187, 188], from T1-, T2- and PD weighted MRI volumes in combina-
tion with SPAMs (Statistical Probability of Anatomy Maps) for white
matter, gray matter and CSF.

Kamber [86] investigates distance-to-mean-feature classifiers, Bayesian
classifiers and decision-tree classifiers to detect MS lesions from multi-
channel MRI and a probabilistic model of the brain.

In [19], Clarke shows that the k-NN rule has higher accuracy and sta-
bility for MRI data than the other common classifiers, but has a slower
running time. Unfortunately, slow classification is often impractical be-
cause it limits the interactive selection of classification parameters during
training. Cline [20] reports the effectiveness of interactive classification,
where the training data is modified by a trained observer on the basis
of the classification results.

Warfield [175] proposes the above mentioned k-DT algorithm for faster
k-NN classification when the pattern space has a low dimensionality. Tn
[176], he embeds k-NN classification into a template-moderated spatially
varying statistical classification, as illustrated at Figure 11.3.

In conclusion, the k-NN classifier is one of the most efficient tools for
tissue clagsification in multi-channel MRI. For an improved accuracy,
it should be combined with a template description of the spatial tissue
distribution in the anatomy.

11.3 Results 175

Volimetric image data ———s¢ Feature identification kNN classification Segmentation
Tissue class prototypes —T
Anatomical template —_ = Elastic Matching

Figure 11.3: Schematic for Adaptive Template Moderated Spatially
Varying Classification [176]. Initialization consists of image acquisi-
tion, tissue class prototypes selection and rigid registration of a normal
anatomy to the image data. The anatomical template is converted into
a set of features describing the anatomical localization with a distance
transform. A segmentation based on these features and on the volu-
metric data is done with k-NN classification. This segmentation is then
used to refine the alignment of the template anatomy with a fast elastic
matching algorithm, and the process is iterated.

11.3 Results

In order to illustrate the efficiency of k-NN classification for the analysis
of T1,T2 pairs of MRI images, we consider the images of Figure 11.2.
The image on the left is a 256 x 256 x 120 T1-weighted MRI. The image
on the right is a 256 x 256 x 30 T2-weighted MRI. The T1 image was
registered into the coordinates of the T2 image, and resampled to an
identical size. Slice number 22 out of 30 is displayed.

For each of 4 tissue types (background, CSF, grey matter, white mat-
ter}), 300 training samples are manually selected, as illustrated at Figure
11.4. The T1 and T2 values are normalized as values between 0 and
611. The k-DT algorithm is then applied over the 512 x 512 pattern
space. Every possible pattern is classified within the class with most
occurrences in its k-nearest neighbors among the training samples. The
resulting classification of the pattern space is shown at the bottom of
Figure 11.4, with ¥ = 1 and k¥ = 11. The choice of this value is justified
later.

Every voxel in the 2 MRI dataset is then labeled as belonging to the
class found in this (T2,T1) values lookup table. The result of this pro-

cess is found in Figure 11.5.

In Figure 11.4, we can see that the boundaries between the different

176 Chapter 11. Tissue classification in T1,T2 MRI

140 T T T T I
+ background
o C8F
®x grey matter
120 A white matter |
x
100 -

Xx&

»
*
]

i
%

T1 greylevel
(o] o]
(o] (=]
T T
x
x
57y
% o
. ﬁ%?
»«XXXX%XXX %
wE O R
x
|

40t

Figure 11.4: Classification in 4 classes : lookup tables. Up: Training
samples from the 4 tissue classes. Left: Division of the (T2,T1) space
with the NN rule (k = 1). Right: Division of the (T2,T1) plane with the
k-NN rule (k = 11). k-DT was limited to distg = 10000, leaving some
(T2,T1) couples unclassified.

11.3 Results 177

Figure 11.5: Classification in4 tissue classes. Lefi: k = 1. Right: k = 11.

classes in the lookup table are much smoother with ¥ = 11 than with
k = 1. A priori, we expect the unknown probabilistic distribution of
(T1,T2) values for each tissue type to be smooth functions. It is there-
fore reasonable to believe that they are better approximated with a
higher %. In Figure 11.5, it results in a classification that is significantly
less noisy with a higher %, and visually appears to be better with the
use of our a priori anatomical knowledge of the brain.

In a second experiment, training samples from a fifth tissue class were
added to the training data-set. This new tissue type corresponds to
white matter lesions (WML) resulting from multiple sclerosis. One such
lesion can be seen slightly up and left of the center of the image at figure
11.2. From a medical point of view, WML result from a loss of myelin
around the axons. This turns the macroscopic appearance of WML into
a tissue similar to grey matter, located where one would expect white
matter.

Because the lesions in the image are small and only cover a few slices,
only 60 training samples were manually selected this time. They appear
as dots in Figure 11.6.

Obviously, the 5 tissue types classification appears to be a more complex
task, as illustrated by the irregularity of the borders between classes in
the 1-NN lookup table of figure 11.6. Indeed, lesions and grey matter
appear to have very similar characteristics. Nevertheless, with k& = 11,
the borders between classes in the lookup table do appear rather regular.

178 Chapter 11. Tissue classification in T1,T2 MRI

Figure 11.6: Classification in 5 classes : lookup tables. Up: Training
samples from the 5 tissue classes. Left: Division of the (T2,T1) space
with the NN rule (k = 1). Right: Division of the (T2,T1) plane with
the k-NN rule (k = 11).

11.3 Results 179

Figure 11.7: Classification in 5 tissue classes. Left: k = 1. Right: k = 11.

In Figure 11.7, the resulting classification of the voxels of the MR images
is displayed. The lesion is correctly classified, but several other voxels
are mis-classified as belonging to the lesion. This happens for voxels at
the border between grey matter and CSF, where partial volume effects
affect their values. This is of course a limit of the classification method,
since the lesion class is indeed situated partly between the CSF and the
grey matter classes in the lookup table. Improving this would require
to take into account the spatial information and not only the gray level
values.

Finally, we make a quantitative evaluation of the gain in classification
accuracy made by using a large k. The training data set - 1200 and 1260
samples respectively - is uniformally divided into 20 subsets. Each sub-
set is classified using the 19 others as training data. The error ratio is
defined as the average percentage of mis-classified samples in the subsets.

The observed error ratio for k¥ = 1 to 20 are displayed in figure 11.8. The
jagged aspect of the curve results from the fact that most classification
decisions are the result of a vote of the k& nearest samples, choosing be-
tween two classes. In such a dual vote, an even number of voters make
a decision of lesser quality than the same number minus 1.

The error ratio B depends on two main factors. First, the probabilistic
distributions of observed (T1,T2) values for each tissue type can overlap
each other, because of the noise in the images, because of inaccuracies in

180 Chapter 11. Tissue classification in T1,T2 MRI

2 [" | E:l a El 4 [" |

a 2 4 L3 a 1
b= number o neghbors

K b st magrtons
Figure 11.8: Error ratio for 4 tissues (left) and 5 tissues (right) experi-
ments, as a function of k.

the manual selection of samples, because of the intrinsic tissue properties

This corresponds to the Bayesian risk B*, where the probabilistic
distributions are known exactly and the best decision criterion is used.
The second factor depends on the quality of the decision rule that is
used, i.e. on how well we can use the available data to reach a good
decision. Cover [23] showed that the error ratio associated to a k-NN
decision rule was such that

1
RP<RBR<(1+ E)R* (11.1)

which corresponds to the shape of the curves in figure 11.8, notwith-
standing the odd-even staggering. Practically, the value we selected for
the above experiments (k = 11) is a suitable choice. A smaller k¥ would
not take full advantage of the available training samples. A larger k
would require both additional computational time and memory to store
the k-DT. Worse, (11.1) only stands if k/N — 0, so that using a larger
k requires to take more training samples, a time-consuming operation
for the user.

E:l

Conclusion and
perspectives

In this thesis, we have presented an extended review of distance transfor-
mation algorithms and their applications to medical image processing.
While doing so, we have proposed a number of new algorithms. Some
solve old problems faster, some address new problems by extending the
distance transformation concept.

To a large extent, the problem of computing the exact Euclidean DT
in two dimensions can be considered solved by the algorithms of chap-
ters 3 and 5. They have a theoretically optimal O(n?) computational
complexity on n X n images and a computational cost similar to that
of approximate algorithms, which can reasonably be considered as the
practical optimum.

In 3 dimensions, Saito’s algorithm is the fastest for relatively small im-
ages, with a row or column size below 260. For larger datasets, the
hybrid method of chapter 6 - combining slice by slice 2D EDT with the
algorithm of chapter 5 and Saito’s method along the inter-slice axis -
performs best. Within the limits we explored, its computational cost is
nearly independent of the image size.

Chapter 8 (geodesic DT) and chapter 10 (k-DT) explore extensions of
the basic DT concept. Both are similar in the sense that they propose
numerical rasterized solutions to problems that were traditionally con-
sidered within a continuous, analytical framework: the planning of a
robot’s path through a complex environment and k-NN classification of
multi-spectral data.

182 Conclusion

Rasterizing other analytical problems represents a first major perspective
for further extensions of this work. Tn particular, fast Delaunay triangu-
lation and mesh generation techniques on complex data-sets could likely
be addressed with modified DT algorithms.

This may appear to contradict the approach chosen by Breu [17], Guan
[69] or Embrechts [44] (section 2.3.5) who find efficient solutions to the
discrete EDT problem by moving back to the continuous description of
the Voronoi diagram. On the contrary, it stresses the fact that such
issues are best handled when one can consider both sides of the problem
- continuous and digital. This both-sides approach is best illustrated by
the algorithm of chapter 5, that detects corners of the digital Voronoi
diagram, then analytically computes the extent of these corners in the
continuous space.

Considering the geodesic and k-DT algorithms further, both appear to
have an optimal computational complexity, propagating from each pixel
only once {or k times). On the other hand, both algorithms are only
approximate Euclidean DTs, similarly to Danielsson’s [37] or the PSN
algorithm. One may wish to explore ways to generate exact geodesic or
k-DTs, but it should be noted that no application currently requires this.

On the other hand, a second promising perspective resides in the search
for algorithms with a better-than-optimal complexity. This apparently
impossible task could be achieved using a multi-resolution approach, in
which the full resolution is only computed in the few locations where it
really is needed. For instance, &5-NN classification only requires an exact
k-DT on the borders separating the various classes, a tiny fraction of
the complete sample space.

Beside its algorithmic content, this thesis also presents a broad range of
medical image processing applications. In all cases, the distance trans-
formation is only a part of the whole image processing pipe-line. In
chapter 4, myelin sheath thickness can only be evaluated after the image
was thresholded and filtered with connected morphological operators.
In chapter 7, surface-based registration methods require the preliminary
segmentation of similar features in both images. In chapter 9, virtual
endoscopy works in three steps. First the organ is segmented and a 3D
model of it is computed, then the geodesic DT is used to plan the cam-

Conclusion 183

era’s path, and finally the 3D model and the camera locations are used to
generate the endoscopic visualization. In chapter 11, pixel classification
in multi-channel MRI requires to manually pick samples of each tissue
types. Alternatively, the E-NN classification can be embedded into a
more global framework in which the anatomical knowledge is inserted
using deformable templates.

From this brief review, it is clear that applications - particularly in the
medical imaging field - is where most perspectives are open for further
creative research. In our experience, creativity is often stimulated by
practical examples. We hope that those presented in this thesis have
contributed to stimulate the reader’s mind.

184 Conclusion

Related publications

The work carried out in the framework of this thesis has been the sub-
ject of a number publications in international conferences and journals.

The use of multiple neighborhoods in the EDT by propagation algorithm
was first presented at JCTAP’97[27]. In ICIP’97[30], it was extended to
anisotropic grids and applied to the generation of morphological skele-
tons. The implementation of the mathematical morphology dilation
with the PMN algorithm was presented in a local conference [33] and
in IPA’99 [34]. Most of chapter 3, including a detailed analysis of the
computational complexity of the algorithms, will appear in Computer
Vision and Image Understanding [29]. Noticeably, this paper does not
distinguish the PMN and PMON algorithms.

The technical aspects of chapter 4 - the automatic morphometry of
nerve cross-sections - were presented at SPIE Medical Imaging 99 [35].
This paper received a poster award. A paper with less emphasis on
the method itself and more on its validation has been submitted to the
Journal of Neuroscience Methods [130].

The algorithm of chapter 5 was presented in a local conference [31]
and during JCASSP’99 [32]. An extended version has been submitted
to Pattern Recognition [26)].

The atlas-MRI registration in chapter 7 was presented at SPIE Medi-
cal Imaging 96 [36]. The registration was used as the initialization step
of an active surface segmentation of the inner brain structures. The
concept of this method was presented in NMBIA’98 [28] and results in
SPIE Medical Imaging 99 [49].

Papers about the algorithms of chapters 8 to 11 are under preparation.

186 Related publications

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.2

2.3

24

Left: distance from a point to an object. Right: distance
1171« T

Unsigned DT, signed DT and Nearest neighbor transfor-
mation. L. e e
Chamfer matching: Top-left: original image. Top-right
distance map. Bottom: distance map seen as a relief.
Matching criterion for the T shape. Left: convolution

with the original image Right: Convolution with the dis-
fance map v v i r ot e e e e e e

DT by propagation. Original image - after first step -
aftersecond step oL

DT by raster scanning. Original image - after forward
scan - after backward scan Lo oL

DT by independent scanning. Original image - after row-
scan - after column-scan. L. Lo

Example of a distance transformation using the distg
metric. Left: original image. Center: distance map.
Right: Voronoi diagram.

Masks used by chamfer DT algorithms, in 2 (left) and 3
(right) dimensions 0L,

The chamfer (5:7:11) DT. Left: forward and backward
magks. Center: result after forward scan applied on the
original image of figure 2.1. Right finalresult.

Masks used in Danielsson’s 4SED (left) and 8SED (right)
algorithms o e

14

188

List of Figures

2.5

2.6

2.7

2.8
2.9

2.10

2.11

2.12

2.13

2.14

2.15
2.16

2.17

2.18

Errors made by Danielsson’s 4SED (left) and 8SED (right)
algorithms. Object pixel ps is hidden from pixel ¢ by ob-
ject pixels p1 and p3, that are closer to r1 and ra, respec-
tively. Left: q—p1=(3,0), ¢—p2=(2,2), ¢—p3 = (0,3).
Right: ¢ —p1 = (13,1}, ¢ — p2 = (12,5), g —p3 = (11,7) . 22
Directional neighborhoods used by Ragnelmam’s ordered
propagation algorithm. Left: for D(p) = 0. Center: for

Dp)=1 Right: for D(p) > 1. 24
Ragnelmam’s 3-scan 8SSED. Top: masks used. Bottom:
supported propagation directions. 24
Masks for Ragnelmam’s 4-scan 26SSED. 25
Yamada’s EDT. Lefi: the 3x3 mask. Center: result after
1 step. Right: result after twosteps. 26
Eggers’ sufficient propagation neighborhoods. Left: for
D({p)=0. Right: for D(p) >0 29

Independent scanning. Left: After lefi-right scan Right
up-and-down scan, finding the value for D(p) by scanning
columnp,. e 33

Voronoi Polygon V P(g) does not intersect line R if 5g, >
77 35

Left: chamfer masks and the supported propagation direc-
tions. Right: A convex domain on which the two raster-
scan chamfer DT algorithm does not compute the dis-
tance transformation 0o 0oL, 38

Left: a non-convex domain. Right: distance transforma-
tion using the geodesic equivalent of the dist pess metric. 39

Bucket sorting propagation. 40

Minima, catchment basins, watersheds, dams and flood-
inglevel e 44

Watershed segmentation of a 3-level image by Vincent’s
algorithm. Upper left: Original image Upper right: flood-
ing reaches level 1, 3 minima are detected. Lower left:
flooding reaches level 2 Lower right: flooding reaches level
;T 45

Skeleton of an object generated using Danielsson’s method.
Left: Original object Center: Distance transformation
Right: Skeleton L o oo 48

List of Figures

189

2.19

2.20

2.21

2.22

2.23

3.1

3.2

3.3

3.4
3.5
3.6

3.7

3.8

3.9
3.10
3.11

Separation of overlapping objects by applying the water-
shed segmentation to the distance transformation of the
edges of the compound object
Shortest path computation. Left: Original mask, source
and target locations. Center: Geodesic distance from s,
constrained by the mask. Right: Shortest Path between
s and ¢, obtained by back-tracking the propagation of the
Geodesic DT. i e
Disks generated with the chamfer(3:4), chamfer(5:7:11)
and Euclidean metric
Direction of the gradient of the distance in the images of
Figure 2.21. Left: chamfer(3:4). Center: chamfer(5:7:11).
Right: Euclidean.,
Shortest path through a maze. Left: computed with a
chamfer geodesic DT Right: on a continuous plane.

Directed neighbors to consider when using 4-direct neigh-
borhoods
A typical error made by an approximate EDT using the
3 x 3 neighborhood. Object pixel g is hidden from pixel
p by object pixels ¢, and g3, that are closer to p, and ps,
respectively. o o oo o
Relative locations (dz, dy) for which it is possible that an
error occurs, with 0 < dz < 200 and 0 < dy < 200.
Possible errors ratio for various image sizes

S=VP(ONN2\NLp)
pixel » only needs to be propagated to neighbors within
thegreyarea v
Test images where object pixels are black and the DT is
computed at every white pixel. The size of the “circle”
image varies from 200 x 200 to 2000 x 2000. The orienta-
tion of the other two images varies from 0 to 90°.

Test1: Saito’s empty circle image. Note the logarithmic
scale for the CPU times.
Test2: Eggers’ random squares
Test3d: the worst case straight line.
The square and diamond structuring elements are sepa-
rable.

190

List of Figures

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9
4.10

4.11

5.1
5.2
5.3
5.4
5.8

6.1

The neurons. a. a neuron. b. a myelinated fiber. ¢. a
myelin sheath cell. d. terminology for the central and
peripheral nervous systems. 79
Anerve L e e 80
Part of a typical image in the nerve cross-section after
tissue preparation, staining and digitization 83
Typical irregularities in fibers. Left: size can vary from
2 to 20um (diameters). Center: densely packed axons
are connected. Right: bad fixation and coloration leaves
bright rings in the myelin sheath. 84
The area operator flips zones with an area of less than 10
in the original image (left). It can be seen as a re-coloring
(center) and merging (right) of vertices in the zonal graph. 86
Axon separation by distance transform. From left to
right: original image; result of the connected operators
filtering; distance map corresponding to the dilation pro-
cess; detected fibers. L L L oL 88
Obliquity parameters ofa fiber 89
Correction of obliquity. From left to right: a) Fibers
found on an oblique section; b) Principal axes of fibers
c¢) Oblique-corrected fibers 90
Detected fibers overlaid upon the image of figure 4.3 . . . 91
Comparison of fiber size distribution found by the manual
and automatic procedures. x? values are placed on the
upper right corner for each histogram. The bin size is

Comparison of fiber distributions for automatic (above)
and manual (below) measures for data sets 1 (left) and 2

(right) (in=05um). 95
Corners of a Voronoi Polygon. 101
Neighbors to consider during error correction. 102
Testl: Empty circle image. 107
Test2: Random squares 107
Test3: Straight line., 108

Neighborhood used for the 3D ordered propagation algo-
rithm. Left: D(p) = 0 Right: D(p) > 1 for one eighth of
the directions space. 110

List of Figures

191

6.2

6.3
6.4
6.5

6.6

7.1

7.2
7.3

7.4

7.5

7.6

7.7

8.1
8.2
8.3

8.4
8.5

9.1

9.2

Why PMN’s detection criterion does not work in 3D:
p(0,0,0) is closer to ¢(4,4, 8) than to 51(8,0,6), 52(0,8,6)
and s3(0,0,10). Still, pixels r1(3,3,7) and r2(3,3,8) ¢

VP(g)(\N(p) propagate. 111
Testl: Empty sphereimage. 114
Test2: Oriented plane. 115
Computational complexity of Saito’s and the hybrid al-
gorithm on 3D isotropic data. 117
Computational complexity of Saito’s and the hybrid al-
gorithm on 3D anisotropic data (voxel sizeis 1 x1 x4 . 118
Transcranial magnetic stimulation of the visual cortex,
from Potts [123]. oo 125
Experimental setting. 126
Matching criterion as a function of the translation or ro-
tationerrors. Lo oo 127
MRI to physical space registration. Left: unregistered
Right: registered. L L o oo 128
Set of elementary first and second degree transformations
in the direction of the z-axis. 130

Effect of the registration transformations. Left: Affine
transformation. Right: Additional second degree compo-

nents. Up: Axial cut Down: Sagital cut. 131
Some CBA structures overlaid over the MRI: Cortical sur-
face, ventricular system and a few sulci. 132

Left: Domain and object - Right: Geodesic DT with a 3-4

107537 o 1+ 134
Left: Geodesic DT, ball size= /2 - Right: Geodesic DT,

ballgize=6 135
Non-Systematic error o0 o .. 141
Systematic error i e e e e 142

Computational complexity of the geodesic DT algorithms 143

Virtual bronchoscopy. Left: 3d model and camera posi-
tion. Right: endoscopic view. (image from Jolesz et al.
[85]) « v v i i e e 146
Graphical user interface for the interactive camera con-
trol. (Image from Frankenthaler et al. [57]) 147

192

List of Figures

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

10.1

10.2

10.3

11.1
11.2
11.3
114

11.5

11.6

11.7

Shortest path. Left: Domain and points to link Right:
path computed by the path-planning algorithm with 4 = 6.151
Left: Euclidean DT from the walls of the maze Right:

Centeredpath., 152
Computed Tomography of the abdomen. The aorta is
shown using a white arrow inslice 25. 154
Virtual endoscopy of the aorta: camera path generated
by an algorithm similar to Lengyel's 155

Virtual endoscopy of the aorta. Left: Shortest path Right:
Path centered and smoothed by the snake energy mini-

MIZation. e e e e e e e e e e e e 155
Computed Tomography of the colon. 156
Left: Shortest path Right: Centered path flying through

thecolon oL 157
Endoscopic view oo a e 157

k-DT algorithmic complexity: dependence from the num-

ber of neighbors % for several image sizes 166
k-DT algorithmic complexity: dependence from the im-

age size (n X n) for several valuesof k. 167
k-DT algorithmic complexity: dependence from the num-

ber N of training patterns for several valuesof k. 168
T1 and T2 relaxation 172
Tl and T2 MR images. oo v v 173
Schematic for ATMSVC, 175

Classification in 4 classes : lookup tables. Up: Training
samples from the 4 tissue classes. Left: Division of the
(T2,T1) space with the NN rule (k = 1). Right: Division
of the (T2,T1) plane with the k-NN rule (k = 11). &
DT was limited to distg = 10000, leaving some (T2,T1)

couples unclassified. 176
Classification in 4 tissue classes. Left: k¥ = 1. Right:
k=11, . e 177

Classification in 5 classes : lookup tables. Up: Training
samples from the 5 tissue classes. Left: Division of the
(T2,T1) space with the NN rule (k = 1). Right: Division
of the (T2,T1) plane with the 5NN rule (k =11).178
Classification in 5 tissue classes. Left: k¥ = 1. Right:
E=11. . . e e 179

List of Figures 193

11.8 Error ratio for 4 tissues (left) and 5 tissues (right) exper-
iments, as a functionof k. o0 180

194 List of Figures

Bibliography

[1]

[2]

[3]

[4]

[8]

[6]

[7]

[8]

[9]

L. Abbott, R.M. Haralick, and X. Zhuang. Pipeline architectures
for morphological image analysis. Mach. Vision Appl., 1(1):23-40,
1988.

A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic pro-
gramming for solving variational problems in vision. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 12:855-867, 1990.

H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, and H.C. Wolf. Para-
metric correspondance and chamfer matching: two techniques for

image matching. In Proc. 5th Internotionol Joint Conference on
Artificial Intelligence, pages 659-663, 1977.

S. Belkasim, M. Shridhar, and M. Ahmadi. Pattern classification
using an efficient knnr. Pattern Recognition, 25:1269-1274, 1992.

S. Beucher and C. Lantuéjoul. Use of watersheds in contour de-
tection. In I'nt. Workshop Image Processing, Reol-Time FEdge and
Motion Detection/Estimation, Rennes, France, 1979.

H. Blum. A transformation for extracting new descriptors of shape.
In W. Walthen-Dunn, editor, Models for the Perception of Speech
and Visual Form, 1967.

H. Blum and R.N. Nagel. Shape description using weighted sym-
metric axis features. Pattern Recognition, 10:167-180, 1978.

C. Bohm, T. Greitz, D. Kingsley, B.M. Berggren, and L. Olsson.
Adjustable computerized stereotaxic brain atlas for transmission
and emigsion tomography. Am J. Neuroradiology, 4:731-733, 1983.

Ph. Bolon, J.L. Vila, and T. Auzepy. Oprateur local de distance
en maillage rectangulaire. In #™¢ Collogue de Gomirie Discrie:
Fondements et Applications, pages 45-56, 1992.

196

Bibliography

[10]

[11]

[12]

[13]

(14

[15]

[16]

[17]

[18]

[19]

G. Borgefors. Distance transformation in arbitrary dimensions.
Computer Vision, Graephics, aend Imoge Processing, 27:321-145,
1984.

(G. Borgefors. An improved version of the chamfer matching al-
gorithm. TIn Prec. 7th Int. Conf. on Paiter Recognition, pages
1175,1177, Montreal, Canada, 1984.

G. Borgefors. Distance transformations in digital images. Com-
puter Vision, Graphics, end Image Processing, 34:344-371, 1986.

G. Borgefors. Hierarchical chamfer matching: a parametric edge
matching algorithm. IEEE Transactions on Pattern Anolysis and
Machine Intelligence, 10(6):849-865, 1988.

G. Borgefors and I. Nystrom. Efficient shape representation by
minimizing the set of centres of maximal discs/spheres. Pattern
Recognition Letters, 18:465-472, 1997.

J.D. Bourland and Q.R. Wu. Use of shape for automated, opti-
mized 3d radiosurgical planning. In Proc. SPIE Medical Fmaging,
pages 553-558, Newport Beach, California, 1996.

J.P. Brasil-Neto, L.M. McShane, P. Fuhr, and M. Hallett
ad L.G. Cohen. Topographic mapping of the human motor cortex
with magnetic stimulation: factors affecting accuracy and repro-
ducibility. Electroencephalogr Clin Neurophysiol, 85:9-16, 1992.

H. Breu, J. Gil, D. Kirkatrick, and M. Werman. Linear time eu-
clidean distance transform algorithm. TEEE Transactions on Pot-
tern Andlysis and Machine Intelligence, 17(5):529-533, 1995.

F. Buchnal and F. Behse. Sensory action potentials and biopsy of
the sural nerve in neuropathy. Proc. of the Int. Symp. on Periph-
eral Neuropathies, Milan, June 1978.

L.P. Clarke, R.P. Velthuizen, S. Phuphanich, J.D. Schellenberg,
J.A. Arrington, and M. Silbiger. Mri: stability of three supervised
segmentation techniques. Magnetic Resonance Imaging, 11:95-
106, 1993.

Bibliography

197

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H.E. Cline, W.E. Lorensen, R. Kikinis, and F. Jolesz. Three-
dimensional segmentation of mr images of the head using prob-

ability and connectivity. J. Computer Assisted Tomogrophy,
14(6):1037-1045, 1990.

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens,
and G. Marchal. Automated multi-modality image registration
based on information theory. In Y. Bizais, C. Barillot, and R. Di
Paola, editors, Informetion processing in medical imaging 1995,
pages 263-274, Dordrecht, The Netherlands: Kluwer, 1995.

D. Coquin and Ph. Bolon. Discrete distance operator on rectan-
gular grids. Pattern Recognition Letters, 16(9):911-923, 1995.

T.M. Cover. Estimation by the nearest neighbor rule. JEEE Trans-
actions on Informetion Theory, 14:50-55, 1968.

T.M. Cover and P.E. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13:21-27, 1967.

G.B. Cragg and P.K. Thomas. Changes in conduction velocity
and fibre size proximal to peripheral nerve lesions. J. Physiol.,
157:315, 1961.

0. Cuisenaire. On the errors made by approximate euclidean dis-
tance transformation algorithms. submitted to Pattern Recogni-
tion.

0. Cuisenaire. Region growing euclidean distance transforms. In
9th Internotional Conference on Image Analysis and Processing
(ICIAP’37), volume 1, pages 263-270, Florence, Ttaly, September
1997.

O. Cuisenaire, M. Ferrant, J-Ph. Thiran, and B. Macq. Model-
based segmentation and recognition of anatomical brain structures
in 3d mr images. In Proe. Noblesse Model-Based Image Anclysis
Workshop (NMBIA’98), pages 9-14, Glasgow, UK, July 1998.

0. Cuisenaire and B. Macq. Fast euclidean distance transforma-
tion by propagation using multiple neighborhoods. to appear in
Computer Vision ond Image Understanding.

198

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

O. Cuisenaire and B. Macq. Applications of the region growing
euclidean distance transform: anisotropy and skeletons. In In-
ternational Conference on Image Processing (ICIP’97), volume 1,
pages 200-203, Santa Barbara (CA), October 1997.

0. Cuisenaire and B. Macq. Fast and exact signed euclidean dis-
tance transformation with linear complexity. In Proc. Int. Sympo-
sium on Pattern Recognition 'In Memorian Pierre Devijver’, pages
140-143, Brussels, Belgium, February 1999.

0. Cuisenaire and B. Macq. Fast and exact signed euclidean
distance transformation with linear complexity. In Preoc. IEEE
Int. Conference on Acoustics, Speech and Signal Processing
(ICASSP39), volume 6, pages 3293-3296, Phoenix (AZ), March
1999.

0. Cuisenaire and B. Macq. Fast euclidean morphological opera-
tors using local distance transformation by propagation. In Proc.
Int. Symposium on Pattern Recognition 'In Memorian Pierre De-
vijver’, pages 144-148, Brussels, Belgium, February 1999.

0. Cuisenaire and B. Macq. Fast euclidean morphological op-
erators using local distance transformation by propagation, and
applications. In Proc. 7Tth Int. Conf. on Image Processing and its
Applications (IPA99), Manchester, UK, July 1999.

0. Cuisenaire, E. Romero, C. Veraart, and B. Macq. Automatic
segmentaion and measurement of axones in microscopic images. In
Proc. SPIE Medicol Imaging 1999, volume 3661, pages 920-929,
San Diego (CA), February 1999. MI Poster Award.

O. Cuisenaire, J.Ph. Thiran, Benoit Macq, Christian Michel,
Anne De Volder, and Ferran Marqués. Automatic registration of
3d mr images with a computerized brain atlas. In Proc. SPIFE Med-
icol Imeaging 1996, volume 2710, pages 438-448, Newport Beach
(CA), February 1996.

P.E. Danielsson. Euclidean distance mapping. Computer Grophics
and Image Processing, 14:227-248, 1980.

B. Davey, R. Comeau, P. Munger, L. Pisani, D. Lacerte, A. Olivier,
and T. Peters. Multimodality interactive stereoscopic image-

Bibliography 199

guided neurosurgery. In Visuslization in Biomedicel Computing
94, volume SPIE 2359, pages 526-536, 1594.

[39] R. Dial. Algorithm 360: Shortest path with topological ordering.
Communicetions of the ACM, 1:632-633, 1969.

[40] P.J. Dyck, J. Karnes, P. O’Brien, H. Nukada, A. Lais, and P. Low.
Spatial pattern of nerve fiber abnormality indicative of pathologic
mechanism. Am. J. of Pathology, 117:225-238, 1984.

[41] H. Eggers. Parallel euclidean distance transformations in z®. Pat-
tern Recognition Letters, 17:751-757, 1996.

[42] H. Eggers. Two fast euclidean distance transformations in z? based
on sufficient propagation. Computer Vision and Imaege Under-
standing, 69(1):106-116, 1998.

[43] A. Elmoataz, S.Schipp, R. Cloaurd, P. Herlin, and D. Bloyet.
Using active contours and mathematical morphology tools for
quantification of immunohistochemichal images. Signal Process-
ing, 71:215-226, 1998.

[44] H. Embrechts and D. Roose. A parallel euclidean distance trans-
formation algorithm. Computer Vision ond Image Understanding,
63:15-26, 1996.

[45] A. English, M.B. Luskin, R. McKeon, K. Petersen, K. Vydareny,
J.R. Wilson, and S.L. Wolf. Organization of the nervous system:
An introduction for students in the human anatomy course.
http:/ fwww.cc.emoryedu/ ANATOMY / AnatomyManual /nervous_system.html,
Emory University, Atlanta, GA.

[46] Kikinis et al. A digital brain atlas for surgical planning, model
driven segmentation and teaching. JEEFE Transactions on Visual-
ization and Computer Graphics, 2, 1996.

[47] Wells et al. Multi-modal volume registration by maximization of
mutual information. Medical Image Analysis, 1:35-51, 1996.

[48] G.J. Ettinger, W.E.L. Grimson, T. Lozano-Perez, W.M. Wells,
S.J. White, and R. Kikinis. Automatic registration for multiple
sclerosis change detection. In IFEFE workshop on biomedical image
analysis, pages 297-306, Seattle, WA, 1994.

200

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M. Ferrant, . Cuisenaire, and B. Macq. Multi-object segmen-
tation of brain structures using a computerized brain atlas. In
Proc. SPIE Medicol Imaging 1999, volume 3661, pages 986-995,
San Diego (CA), February 1999.

M.R. Fiola. Peripheral nerve morphometry for daily practice.
Anal. Quant. Cytol. Histol., 7:299-304, 1984.

C.M. Figsher and R.D. Adams. Diphtheritic polyneuritis: a patho-
logical study. J.Neuropath. Fxp. Neurol., 15:243, 1956.

J.M. Fitzpatrick, J.B. West, and C.R. Maurer. Predicting error in
rigid-body point-based registration. IEEFE Transactions on Medi-
cal Imaging, 17:694-702, 1998.

E. Fix and J.L. Hodges. Discriminatory analysis, non-parametric
discrimination. Technical report, USAF School of Aviation
Medicine, Randolf Field, Tex. Project 21-49-004, Rept. 4, Con-
tract AF41(128)-31, February 1951.

E. Fix and J.L. Hodges. Discriminatory analysis, small-sample per-
formance. Technical report, USAF School of Aviation Medicine,
Randolf Field, Tex. Project 21-49-004, Rept. 11, August 1952.

Y.L. Fok, J.C.K. Chan, and R.T. Chin. Automated analysis of
nerve-cell images using active contour models. TEEE Trans. on
Medical I'maging, 15:353-368, 1996.

S. Forchhammer. Euclidean distances from chamfer distances for
limited distances. In 6th Scandinavian Conf. on Image Analysis,
pages 393-400, Oulu, Finland, 1989.

R. Frankenthaler, V.M. Moharir, R. Kikinis, P. van Kipshagen,
F.A. Jolesz, C. Umans, and M.P. Fried. Virtual otoscopy. Oto-
laryngologic Clinics of North America, 31:383-391, 1998.

M.P. Fried, V.M. Moharir, H. Shinmoto, A.M. Alyassin, W.E.
Lorensen, L. Hsu, F.A. Jolesz, and R. Kikinis. Virtual laryn-
goscopy. Annals of Otologym Rhinology and Laryngology, 108:221-
226, 1998.

J.H. Friedman, F. Baskett, and L.J. Shustek. An algorithm for
finding nearest neighbors. IEEFE Transactions on Computers,
24:1000-1006, 1975.

Bibliography 201

[60] K. Fukunaga and P. Narendra. A branch and bound algorithm for
k-nearest neighbors. IEEE Tronsactions on Computers, 24:750—
753, 1975.

[61] K.R. Gabriel and R.R. Sokal. A new statistical approach to geo-
graphic variations analysis. Systematic Zoology, 18:259-278, 1969.

[62] C. Garbay. Image structure representation and processing: a dis-
cussion of some segmentation methods in cytology. JEEE Trons.
on Pattern Analysis and Machine Intelligence, 8:140-146, 1986.

[63] G.W. Gates. The reduced nearest neighbor rule. IEEE Transac-
tions on Information Theory, 18:431-433, 1972.

[64] Y. Ge and J.M. Fitzpatrick. On the generation of skeletons from
discrete euclidean distance maps. IEEE Transections on Poitern
Analysis and Machine Intelligence, 18:1055-1066, 1996.

[65] B. Geiger and R. Kikinis. Simulation of endoscopy. In N. Ayache,
editor, Proceedings First International Conference on Vision, Vir-
tuol Reality, and Robotics in Medicine, volume 905, pages 542-548,
Lecture Notes in Computer Science. Verlag Springer, 1995.

[66] M.S. George, E.M. Wassermann, W.A. Williams, A. Callahan,
T.A. Ketter, P. Basser, M. Hallett, and R.M. Post. Daily repet-
itive transcranial magnetic stimulation (rtms) improves mood in
depression. Neuroreport, 6:1853—-1856, 1995.

[67] S. Gilani, A.M. Norbash, H. Ringl, G.D. Rubin, S. Napel, and D.J.
Terris. Virtual endoscopy of the paranasal sinus using perspective
volume rendered helical sinus computed tomography. Laryngo-
scope, 107:25-29, 1997.

[68] W.E.L. Grimson, G.J. Ettinger, S.J. White, T. Lozano-Perez,
W.M. Wells, and R. Kikinis. An automatic registration method for
frameless stereotaxy, image-guided surgery and enhanced reality
visualization. IEEE Transactions on Medical Imaging, 15:129-140,
1996.

[69) W. Guan and 8. Ma. A list-processing approach to com-
pute voronoi diagrams and the euclidean distance transform.
IEEE Tronsactions on Pattern Analysis and Machine Intelligence,
20(7):757-761, 1998.

202

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

E. Gutmann and F.K. Sanders. Recovery of fiber numbers and
diameters in regeneration of peripheral nerves. J. Physiol. (Lond.),
43:101-489, 1942.

P.E. Hart. The condensed nearest neighbor rule. IEEE Transac-
tions on Information Theory, 14:515-516, 1968.

H.J.A.M. Heijmans. Connected morphological operators for binary
images. Computer Vision and Image Understanding, 73 (1):99-
120, 1999.

P.F. Hemler, T.S. Sumanaweera, P.A. van den Elsen, 5. Napel, and
J.R. Adler. A versatile system for multimodality image fusion. J.
Imoage Guided Surg., 1:35-45, 1995.

C.J. Henri, A. Cukiert, D.L. Collins, A. Olivier, and T.M. Pe-
ters. Towards frameless stereotaxy: anatomical-vascular correla-
tion and registration. In Visualization in Biomedicel Computing
1992, volume SPIE 1808, pages 214-224, 1992,

J.L. Herring, B.M. Dawant, C.R. Maurer, D.M. Muratore, R.L.
Galloway, and J.M. Fitzpatrick. Surface-based registration of ct
images to physical space for image-guided surgery of the spine: a
sensitivity study. IEEFE Trensections on Medicol Imaging, 17:743-
752, 1998.

D.L.G. Hill and D.J. Hawkes. Medical image registration using
knowledge of adjacency of anatomical structures. Fmage and vision
computing, 12:173-178, 1994.

C.T. Huang and O.R. Mitchell. A euclidean distance transform
using greyscale morphology decomposition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(4):443-448, 1994.

J.M. Jacobs and S. Love. Qualitative and quantitative morphology
of human sural nerve at different ages. Brain, 108:897-924, 1985.

A K. Jain, 8.P. Smith, and E. Backer. Segmentation of muscle cell
pictures: a preliminary study. IEEFE Trens. on Pattern Analysis
and Machine Intelligence, 2:232-242, 1980.

H. Jiang, K.S. Holton, and R.A. Robb. Image registration of
multi-modality 3-d medical images by chamfer matching. In Proc.

Bibliography

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Biomedical image processing and three-dimensional microscopy,
volume SPIE 1660, pages 356-366, 1992,

H. Jiang, R.A. Robb, and K.S. Holton. A new approach to 3-d reg-
istration of multimodality medical images by surface matching. In
Proc. Visuolization in Biomedical Computing 1932, volume 1808,
pages 196-213, 1992.

Q. Jiang and W. Zhang. An improved method for finding nearest
neighbors. Patiern Recognition Letters, 14:531-535, 1993.

Q. Jiang and W. Zhang. An improved method for finding nearest
neighbors. Patiern Recognition Letters, 14:531-535, 1993.

F.A. Jolesz, W.E. Lorensen, and R. Kikinis. Virtual endoscopy:
three-dimensional rendering of cross-sectional images for endolu-
minal visualization. Radiology, 193:469, 1994.

F.A. Jolesz, W.E. Loresen, H. Shinmoto, H. Atsumi, S. Naka-
jima, P. Kavanaugh, P. Saiviroonporn, S.E. Seltzer, S.G. Silver-
man, M. Phillips, and R. Kikinis. Interactive virtual endoscopy.
Amer. Journ. Rediology, 169:1229-1237, 1997.

M. Kamber, R. Singhal, D.L. Collins, G.S. Francis, and A.C.
Evans. Model-based 3-d segmentation of multiple sclerosis lesions
in magnetic resonance brain images. IEEE Transactions on Med-
ical Imaging, 14(3):442-453, 1995.

B. Kamgar-Parsi and L.N. Kanal. An improved branch nd bound
algorithm fro computing k-nearest neighbours. Pattern Recogni-
tion Letters, 3:7-12, 1985.

I. Kapouleas, A. Alavi, W.M. Alves, R.E. Gur, and D.W. Weiss.
Registration of three-dimensiona mr and pet images of the human
brain without markers. Radiology, 181:731-739, 1991.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes, active contour
models. International Journal of Computer Vision, 1:321-331,
1988.

R. Kikinis, C. Umans, S. Jones, W.E. Lorensen, and F.A. Jolesz.
Virtual otoscopy. In Image Conference, Scottsdale, AZ, June 1996.

203

204

Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

E.L. Lawler and D.E. Wood. Branch-and-bound methods. a sur-
vey. Oper. Res., 149(4), 1966.

D. Lemoine, D. Leigeard, E. Lussot, and C. Barillot. Multimodal
registration gystem for the fusion of mri, ct, meg and 3d or stereo-
tactic angiography data. In Proe. SPIE Medical Imaging 84: Im-
age Capture, Formatting and Display, volume SPIE 2164, pages
46-56, 1994.

J. Lengyel, J. Reichert, B.R. Donald, and D.P. Greenberg. Real-
time robot motion planning using rasterizing. Computer Graphies,
24:327-335, 1990.

G. Levi and U. Montanari. A grey-weighted skeleton. Inform.
Control, 17:62-91, 1970.

F. Leymarie and M.L. Levine. Fast raster-scan distance propa-
gation on the discrete rectangular lattice. CVGIP: Image Under-
stonding, 55:85-94, 1992.

W.E. Lorensen and H.E. Cline. Marching cubes: a high resolution
3d surface construction algorithm. Computer Graphics, pages 163
169, 1987.

W.E. Lorensen, F.A. Jolesz, and R. Kikinis. The exploration of
cross-sectional data with a virtual endoscope. In Interactive tech-

nology and the new pordigm for health-care: medicine meets virtual
reality ITT, pages 221-230, Amsterdam, Holland: IOS Pregs, 1995.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and
P. Suetens. Multimodality image registration by maximization
of mutual information. ITEEE Traensactions on Medical Imaging,
16:187-198, 1997.

J.B.A. Maintz, P.A. van den Elsen, and M.A. Viergever. Compari-
son of feature-based matching of ct and mr brain images. In N. Ay-
ache, editor, Proc. CVRMed ’95, pages 219-228, Berlin: Springer-
Verlag, 1995.

V.R. Mandava, J.M. Fitzpatrick, C.R. Maurer, R.K. Maciunas,
and G.S. Allen. Registration of mutimodal volume head images vie
attached markers. In SPIFE Medical Imaging 92: Image Processing,
volume SPIE 1652, pages 271-282, 1992.

Bibliography 2056

[101] J.F. Mangin, V. Froin, I. Bloch, B. Bendriem, and J. Lopez-Krahe.
Fast non-supervised 3d registration of pet and mr images from the
brain. Journal of Cerebral Blood Flow and Metabolism, 14:749-
792, 1994.

[102] C.R. Maurer, J.M. Fitzpatrick, R.L. Galloway, M.Y. Wang, R.J.
Maciunas, and G.S. Allen. The accuracy of image-guided neu-
rosurgery using implantable fiducial markers. In Proc. Computed
Asisted Rediology 1995, pages 1197-1202, Berlin: Springer-Verlag,
1995.

[103] C.R. Maurer, J.M. Fitzpatrick, M.Y. Wang, R.L. Galloway, R.J.
Maciunas, and G.S. Allen. Registration of head volume images
using implantable fiducial markers. JEEE Transactions on Medicol
Imaging, 16:447-462, 1997.

[104] C.R. Maurer, R.J. Maciunas, and J.M. Fitzpatrick. Registration
of head ct images to physical space using a weighted combination
of points and surfaces. TEEE Traonsactions on Medical Imaging,
17:7563-761, 1998.

[105] T.M. Mayhew, A.K. Sharma, and K.S. Bedi. Economical sampling
designs for sizing fibres in peripheral nerves. Acte Anat., 111:97,
1981.

[106] F. Meyer. Un algorithme optimal de ligne de partage des eaux. In
Actes du 8éme congrés AFCET, pages 847-859, Lyon-Villeurbane,
France, 1991.

[107] F. Meyer. Color image segmentation. In Proc. {th Internat.
Conf. Image Processing Applications, pages 523-548, Maastricht,
Netherlands, 1992.

[108] F. Meyer. Topographic distance and watershed lines. Signal Pro-
cessing, 38:113-125, 1994.

[109] U. Montanari. A method for obtaining skeletons using a quasi-
euclidean distance. J. Assoc. Comp. Mach., 15(4):600-624, 1968.

[110] E.F. Moore. The shortest path through a maze. In Proc. Inter-
national Symposium on the Theory of Switching, pert IT., pages
285-292, Harvard University Press, Cambridge, MA, 1957.

206

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

K. Mori, J. Hasegawa, and J. Toriwaki. Automated extraction and
visualization of bronchus from 3d ct images of lung. In N. Ayache,
editor, Proceedings First International Conference on Vision, Vir-
tuol Reality, and Robotics in Medicine, volume 905, pages 542-548,
Lecture Notes in Computer Science. Verlag Springer, 1995.

J.C. Mullikin. The vector distance transform in two and three
dimensions. CVGIP: Graphical Models and Image Processing,
54:526-535, 1992.

T. Nakagohri, F.A. Jolesz, S. Okuda, T. Asano, T. Kenmochi,
0. Kainuma, Y. Tokoro, H. Aoyama, W.E. Lorensen, and R. Kiki-
nis. Virtual pancreatoscopy of mucin-producing pancreas tumors.
Comp. Aid. Surgery, 3:264-268, 1998.

C.W. Niblack, P.B. Gibbons, and D.W. Capson. Generating skele-
tons and centerlines from the distance transform. CVGIP: Graph-
ical Models and Image Processing, 54:420-437, 1992.

H. Niemann and R. Goppert. An efficient branch-and-bound near-
est neighbor classifier. Pattern Recognition Letters, 7:67-72, 1988.

A. Ohnishi, K. Schilling, W.S. Brimijoin, E.H. Lambert, V.F. Fair-
banks, and P.J. Dyck. Lead neuropathy: morphometry, nerve
conduction and choline acetyltransferase transport. new finding of
endoneurial edema associated with segmental demyelination. J.
Neuropathol. Exp. Newrol, 36:499-518, 1977.

M. Ozkan, B. Dawant, and R. Maciunas. Neural-network-based
segmentation of mutli-modal medical images: a comparative

and prospective study. IEEE Transactions on Medical Imaging,
12(3):534-544, 1993.

D.W. Paglieroni. Distance transforms: properties and machine
vision applications. CVGIP: Graphical Models and Image Pro-
cessing, 54:56-74, 1992.

C.A. Pelizzari, G.T.Y. Chen, D.R. Spelbring, R.R. Weichselbaum,
and C.T. Chen. Accurate three-dimensional registration of cp,pet
and for mr images of the brain. J. Comput. Assist. Tomogr, 13:20—
26, 1989.

Bibliography 207

[120] J. Pick. Myelinated fibers in gray rami commnunicants. Anat.
Ree., 126:395-414, 1956.

[121] U. Pietrzyk, K. Herholtz, and W. Heiss. Three-dimensional aligne-
ment of functional and morphological tomograms. J. Computer
Assisted Tomography, 14:51-59, 1990.

[122] J. Piper and E. Granum. Computing distance transformations in
convex and non-convex domains. Pattern Recognition, 20(6):599-
615, 1987.

[123] G.F. Potts, L.D. Gugino, M.E. Leventon, W.E.L. Grimson,
R. Kikinis, W. Cote, E. Alexander, J. E. Anderson, G.J. Ettinger,
L.S. Aglio, and M.E. Shenton. Visual hemifield mapping using
transcranial magnetic stimulation coregistered with cortical sur-
faces derived from magnetic resonance images. J. Clin. Neuro-
physiology, 15:344-350, 1998.

[124] F. Preteux. On a distance function approach for grey-level math-
ematical morphology. In E.R. Dougherty, editor, Mathematical
Morphology in Fmage Processing, pages 323-351, Marcel Dekker,
New York, 1993.

[125] F. Preteux and N. Merlet. New concepts in mathematical mor-
phology: the topographical distance functions. In P.D. Gardner
and E.R. Dougherty, editors, Proc. SPIFE 1568, pages 66-77, 1991.

[126] I. Ragnelmam. Fast erosion and dilation by contour processing
and thresholding of distance maps. Pattern Recognition Letters,
13:161-166, 1992.

[127] I. Ragnelmam. Neighborhoods for distance transformations using
ordered propagation. CVGIP, Image Understanding, 56(3):399—
409, 1992.

[128] I. Ragnelmam. The euclidean distance transformation in arbitrary
dimensions. Pattern Recognition Letters, 14:883-888, 1993.

[129] J.D. Robertson. Structural alterations in nerve fibres produced
by hypotonic and hypertonic solutions. Jouwrnal of Biophysics,
Biochemistry and Cytology, 4:349-364, 1958.

208

Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

E. Romero, O. Cuisenaire, J.F. Denef, J. Delbeke, B. Macq, and
C. Veraart. Automatic morphometry of nerve cross sections. sub-
mitted to the Journal of Neuroscience Methods.

A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic
Press, New York, 1976.

A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital pic-
ture processing. J. Assoc. Comp. Mach., 13:471-494, 1966.

A. Rosenfeld and J.L. Pfaltz. Distance functions on digital pic-
tures. Pattern Recognition, 1(1):33-61, 1968.

G.D. Rubin, C.F. Beaulieu, and V. Argiro V. Perspective vol-
ume rendering of ¢t and mr images: applications for endoscopic
imaging. Radiology, 199:321-330, 1996.

P. Rudge, J. Ochoa, and R.W. Gilliatt. Acute peripheral nerve
compression in the baboon. J.Neurol.Seci., 23:403, 1974.

J.G. Rukavina, W.D. Block, C.E. Jackson, H.F. Falls, J.H. Carey,
and Curtin A.C. Primary systemic amyloidosis: a review and an
experimental, genetic and clinical study of 29 cases with particular
emphagis on the familial form. Medicine, Baltimore, 35:29, 1956.

W.A.H. Rushton. A theory of the effects of fiber size in medullated
nerve. J. Physiology, 115:101-122, 1951.

D. Rutovitz. Data structures for operations on digital images. In
G.C. Cheng, R.S. Ledley, D.K. Pollok, and A. Rosenfeld, editors,
Pictorial Pattern Recognition, pages 105-133, Thomson Book,
WA, 1968.

D. Rutovitz. Expanding picture components to natural density
boundaries by propagation methods, the notions of fall-set and
fall-distance. In Proc. 4th Int. Joint Conf. Pattern Recognition,
pages 657-664, Kyoto, Japan, 1978.

T. Saito and J.I. Toriwaki. New algorithms for euclidean distance
transformations of an n-dimensional digitised picture with appli-
cations. Pattern Recognition, 27(11):1551-1565, 1994.

Bibliography 209

[141] R.H. Schultz and U.L.I. Karlsson. Fixation of the central nervous
system for electron mycroscopy by aldehyde perfusion. ii. effect of
osmolarity. ph of perfusate, and fixative concentration. J. Ultra-
struct. Res., 12:187-206, 1965.

[142] R.J. Seitz, C. Bohm, T. Greitz, P.E. Roland, L. Eriksson,
G. Blomqvist, G. Rosenqvist, and B. Nordell. Accuracy and preci-
sion of the computerized brain atlas program for localization and

quantification in positron emission tomography. Journel of Cere-
bral Blood Flow and Metabolism, 10:443-457, 1990.

[143] J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, New York, 1982.

[144] J. Serra. Image Andlysis and Mathematical Morphology, Vol. 2:
Theoretical Advances. Academic Press, New York, 1988.

[145] M.Y. Sharaiha and N. Christofides. A graph-theoric approach to
distance transformations. Paitern Recognition Letiers, 15:1035-
1041, October 1994.

[146] F.Y.-C. Shih and J.J. Liu. Size-invariant four-scan euclidean
distance transformation. Pattern Recognition, 31(11):1761-1998,
1998.

[147] F.Y.-C. Shih and O.R. Mitchell. A mathematical morphology ap-
proach to euclidean distance transformation. IEEE Trensactions
on Image Processing, 1(2):197-204, 1992.

[148] J.A Simpsom. Biology and disease of periheral nerves. Br.Med.J.,
2:709, 1964.

[149] V. Starovoitov. A clustering technique based on the distance trans-
form. Patiern Recognition Letters, 17:231-239, 1996.

[150] C. Studholme, D.L.G. Hill, and D.J. Hawkes. Automated regis-
tration of trucated mr and ct datasets of the head. In Proc. B.
Machine Vision Association, pages 27-36, 1995.

[151] J. Talairach and P. Tournoux. Co-planar stereotazic atlas of the
humen brain. 3-dimensional proportional system: an approach to
cerebral imaging. Thieme Medical Publicher, Inc., Stuttgart, New
York, 1988.

210

Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

J.-P. Thiran, V. Warscotte, and B. Macq. A queue-based region
growing algorithm for accurate segmentation of multi-dimengional
digital images. Signal Processing, 60:1-10, 1997.

J.Ph. Thiran and B. Macq. Morphological feature extraction for
the classification of digital images of cancerous tissues. IFEE
Trans. on Biomedicel Engineering, 43:1011-1019, 1996.

P.K. Thomas and R.G. Lascelles. Schwann-cell abnormalities in
diabetec neuropathy. Lancet, i:1355, 1965.

L. Thurflell, C. Bohm, T. Graitz, and L. Eriksson. Transforma-
tions and algorithms in a computerized brain atlas. IFEE Trans.
on Nuclear Sciences, 40:1187-1191, 1993.

P.J. Toivanen. New geodesic distance transforms for gray scale
images. Pattern Recognition Letters, 17:437-450, 1996.

I. Tomek. Two modifications of con. JEEFE Trans. Syst. Moan
Cybernet., 6:769-772, 1976.

S. Torch, P. Stoebner, Usson Y., Drouet D’Aubigni, and R. Saxod.
There is no simple adequate sampling scheme for estimating the
myelinated fibre size distribution in human peripheral nerve: a
statistical ultrastructural study. J. Neuroscience Methods, 27:149—
164, 1989.

G.T. Toussaint. The relative neighborhood graph of a finite planar
set. Pattern Recognition, 12:1324-1347, 1980.

(.D. Trier and T. Taxt. Ewvaluation of binarization methods for
document images. IEEFE Trans. on Pattern Analysis ond Machine
Intelligence, 17:312-315, 1995.

P.A. Van den Elsen, J.B.A. Maintz, E.J.D. Pol, and M.A.
Viergever. Automatic registration of ct and mr brain images using
correlation of geometrical features. IEEE Trensections on Medicol
Imoging, 14:384-395, 1995.

P.A. van den Elsen, E.J.D. Pol, T.S. Sumanaweera, P.FF. Hemler,
S. Napel, and J.R. Adler. Grey value correlation techniques used
for automatic matching of ¢t and mr brain and spine images. In
Proc. Visuolization in Biomedical Computing 1934, volume 2359,
pages 227-237, 1994.

Bibliography 211

[163] P.A. van den Elsen, E.J.D. Pol, and M.A. Viergever. Medical
image matching - a review with classification. ITEEFE FEng. Med.
Biol., 12:26-39, 1993.

[164] M.W. Vannier, R.L. Butterfield, D.L. Rickman, D.M. Jordan,
W.A. Murphy, R.G. Lewitt, and G. Mohktar. Multi-spectral anal-
ysis magnetic resonnance images. Radiology, 154(1):221-224, 1985.

[165] P.W. Verbeek, L. Dorst, B.J.H. Verwer, and F.C.A. Groen.
Collision avoidance and path finding through constrained dis-
tance transformation in robot state space. In Proc. Intelligent
Autonomous Systems, pages 634-641, Amsterdam, Netherlands,
1986.

[166] B.H. Verwer. Local distances for distance transformations in two
and three dimensions. Pattern Recognition Letters, 12:671-682,
1991.

[167] B.H. Verwer, P.W. Verbeek, and S.T. Dekker. An efficient uni-
form cost algorithm applied to distance transforms. TEEE Trons-
actions on Pattern Analysis and Machine Intelligence, 11(4):425—
429, 1989.

[168] L. Vincent. Exact euclidean distance function by chain propaga-
tion. In Computer Vision and Pattern Recognition Conference,
pages 520-525, Hawaii, June 1991.

[169] L. Vincent. Morphological transformations of binary images with
arbitrary structuring elements. Signal Processing, 22:3-23, 1991.

[170] L. Vincent and P. Boille. Watersheds in digital spaces: an efficient
algorithm based on immersion simulation. JEEE Transactions on
Pattern Analysis and Machine Intelligence, 13:583-597, 1991.

[171] D.J. Vining, A.R. Padhani, and S. Wood. Virtual bronchoscopy: a
new perspective for viewing the tracheobronchial tree. Radiology,
189:438, 1993.

[172] D.J. Vining, R.Y. Shifrin, and E.K Grishaw. Virtual colonoscopy.
Radiology, 193:446, 1994.

[173] L.J. Van Vliet and B.J.H. Verwer. A countour-processing method
for fast binary operations. Pattern Recognition Letters, 7:27-36,
1988.

212

Bibliography

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

AM. Vossepoel, A W.M. Smeulders, and K. Van der Broek.
Dioda: delineation and feature extraction of miscroscopical ob-
jects. Comp. Prog. Biomedicine, 10:231-244, 1979.

S. Warfield. Fast k-NN classification for multichannel image data.
Paitern Recognition Letters, 17:713-721, 1996.

S. Warfield, M. Kraus, F. Jolez, and R. Kikinis. Adaptive template
moderated spatially varying statistical classification. In Proc. of
Medicel Image Computing and Computer- Assisted Intervention -
MICCAT98, pages 431-438, Cambridge, MA, USA, 1998.

V. Warscotte, J.-P. Thiran, B. Macq, C. Michel, and P. Fourez.
Accurate segmentation of 3d magnetic resonance images of the
head using a directional watershed transform. In JEEE Engineers
in Medicine and Biology Conference, Montreal, September 1995.

R. Wasserman, J. Rajapakse, and R. Acharya. Multimodality
medical imaging for radiotherapy treatment planning. In IEEE
workshop on Biomedicol image analysis, pages 236-244, 1994.

J. West, J.M. Fitzpatrick, M.Y. Wang, B.M. Dawant, C.R. Mau-
rer, R.M. Kessler, and R.J. Maciunas. Retrospective intermodal-
ity registration techniques for images of the head: surface-based
versus volume-based. In J. Troccaz, E. Grimson, and R. Mos-
ges, editors, Proc. CVRMed-MRCAS 97, pages 151-160, Berlin:
Springer-Verlag, 1997.

J. West, J.M. Fitzpatrick, M.Y. Wang, B.M. Dawant, C.R. Mau-
rer, R.M. Kessler, and R.J. Maciunas. Retrospective intermodal-
ity registration techniques for images of the head: surface-based
versus volume-based. IFEFE Transactions on Medical Imaging,
18:144-150, February 1999.

J. West, J.M. Fitzpatrick, M.Y. Wang, B.M. Dawant, C.R. Mau-
rer, R.M. Kessler, R.J. Maciunas, C. Barillot, D. Lemoine, A. Col-
lignon, F. Maes, P. Suetens, D. Vandermeulen, P.A. van den
Elsen, S. Napel, T.S. Sumanaweera, B. Harkness, D.L.G. Hill,
C. Studholme, GG. Malandain, X. Pennec, M.E. Noz, C.QQ. Maguire,
M. Pollack, C.A. Pellizari, A. Robb, D. Hanson, and R.P. Woods.
Comparison and evaluation of retrospective intermodality image
registration methods. In Proc. SPIE Medical Imaging 96, volume
SPIE 2710, pages 332-346, 1996.

Bibliography 213

[182] J. West, J.M. Fitzpatrick, M.Y. Wang, C.R. Maurer, R.M. Kessler,
R.J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes,
P. Suetens, D. Vandermeulen, P.A. van den Elsen, S. Napel,
T.S. Sumanaweera, B. Harkness, P.F. Hemler, D.L.G. Hill, D.J.
Hawkes, C. Studholme, J.B.A. Maintz, M.A. Viergever, G. Ma-
landain, X. Pennec, M.E. Noz, C.Q. Maguire, M. Pollack, C.A.
Pellizari, A. Robb, D. Hanson, and R.P. Woods. Comparison and
evaluation of retrospective intermodality image registration meth-
ods. J. Comput. Assist. Tomogr., 21:554-566, 1997.

[183] S. Wong, R. Knowlton, M. Chew, and H. Huang. Integrating
mutli-dimensional imaging, multi-modality registration and mul-
timedia database for epilepsy diagnosis. In SPIE medicol imoging
1995, page 2431, 1995.

[184] R.P. Woods, J.C. Maziotta, and S.R. Cherry. Mri-pet registation
with automated algorithm. J. Computer Assisted Tomography,
17:536-546, 1993.

[185] H. Yamada. Complete euclidean distance transformation by par-
allel operation. In 7th Internetional Conference on Pattern Recog-
nition, pages 336-338, Montreal, Canada, 1984.

[186] G.Z. Ye. The signed euclidean distance transform and its appli-
cations. In 9th Internotional Conference on Pettern Recognition,
volume 1, pages 495-499, Rome, Ttaly, 1988.

[187] A. Zijdenbos, B. Dawant, R. Margolin, and C. Palmer. Morpho-
metric analysis of white matter lesion in mr images: Method and
validation. IEEE Transactions on Medical Imaging, 13(4):716-724,
1994.

[188] A. Zijdenbos, R. Forghani, and A. Evans. Automatic quantifica-
tion of ms lesions in 3d mri brain data sets: validation of insect.
In Proc. of Medical Image Computing and Computer-Assisted In-
tervention - MICCAI'98, pages 439448, Cambridge, MA, USA,
1998.

[189] T.D. Zuk and M.S. Atkins. A comparison of manual and automatic
methods for registering scans of the head. IEEFE Trensactions on
Medical Imaging, 15:732-744, 1996.

